首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大跨度钢索和CFRP索斜拉桥车桥耦合振动研究   总被引:5,自引:0,他引:5  
谢旭  朱越峰  申永刚 《工程力学》2007,24(Z1):53-61
以跨度600m~1400m的大跨度斜拉桥为对象,应用考虑拉索侧向振动影响的车桥耦合振动分析方法研究了钢索和CFRP索斜拉桥的交通振动响应,比较了车辆计算模型、行车速度对计算结果的影响,并分析了斜拉桥的动力冲击系数。研究结果表明,大跨度斜拉桥主梁的振动响应以静位移和长周期振动成分为主,拉索局部侧向振动不明显,车辆计算模型对结构振动响应的影响十分有限,行车速度的提高增加了结构的动力系数,两种拉索材料对斜拉桥在车辆荷载下的振动响应影响很小,斜拉桥的动力系数离散性大且与构件类型有关。  相似文献   

2.
京沪高速铁路南京长江大桥列车走行性分析   总被引:10,自引:0,他引:10  
运用桥梁结构动力学与车辆动力学的研究方法,将车桥作为联合动力体系,建立了高速列车与大跨度斜拉桥的车桥耦合动力分析模型。以京沪高速铁路南京长江大桥3塔斜拉桥方案为例,分析了大跨度斜拉桥在ICE高速列车作用下的车桥动力响应特点;同时,基于合理的列车走行性评价指标,对高速列车通过大跨度斜拉桥时的走行安全性与舒适性进行了详细分析,初步探讨了大跨度斜拉桥用于高速铁路的可行性。  相似文献   

3.
不同主梁竖曲线下大跨度斜拉桥的车桥耦合振动分析   总被引:1,自引:1,他引:0  
由于混凝土收缩徐变、材料特性及施工荷载与设计值有差异等各方面因素的影响 ,大跨度桥梁在成桥状态下主梁的实际竖曲线往往与设计理论竖曲线不一致 ,这可能给通车后的行车安全性与舒适性带来影响。本文运用文献[1]提出的车桥耦合振动分析理论与方法 ,针对京沪高速铁路南京长江大桥主跨 84 160 4 88 4 88 160 84m三塔斜拉桥方案 ,采用空间杆系单元建立桥梁有限元模型 ,分析了 4种不同主梁竖曲线下ICE高速列车通过桥梁时的车桥耦合振动响应 ,讨论了不同主梁竖曲线对车桥动力响应的影响 ,得到一些有益的结论。  相似文献   

4.
采用子结构法研究了重载列车引起的大跨度铁路斜拉桥拉索非线性振动问题。首先基于线性桥梁空间有限元模型,采用车-桥耦合动力学理论计算得到斜拉索锚固点动力响应;然后将该动力响应作为斜拉索端部激励,采用自编的基于CR列式法(Co-rotational Formulation)的拉索非线性动力有限元程序,计算斜拉索非线性动力响应。以荆岳铁路洞庭湖三塔斜拉桥为例,开展了车致斜拉桥拉索振动分析,结果表明:在设计时速范围内,重载列车作用下,斜拉桥索端激励与拉索固有频率两者不存在明显的匹配关系,车致拉索振动响应为一个准静态过程;通过进一步对比不同计算方案,即车-桥耦合振动、移动轴重瞬态分析与移动轴重影响线加载对拉索响应的影响,发现对于大跨度铁路斜拉桥而言,由于车-桥耦合振动效应不显著,采用移动轴重影响线加载方法得到的拉索应力结果具有足够精度。  相似文献   

5.
通过建立车桥耦合动力学模型,编写计算程序研究了行车速度、偏载距离、结构阻尼、路面不平度、行车方向、轴距、车间距、车辆数及结构设计参数等对蝶形拱桥各构件动力冲击系数的影响。结果表明:主吊索力的冲击系数整体上随着速度的增大而增大;偏载侧主拱拱顶横向位移的冲击系数随着偏载距离的增大迅速增大,而竖向位移的冲击系数却呈现迅速下降的趋势;阻尼比使得各构件的冲击系数均有所降低;构件的冲击系数随着路面不平度等级的不同而不同;异向行驶时,左右对称的各构件冲击系数差别较大;存在某个矢跨比值使得主梁跨中挠度的冲击系数最小;采用尼尔森体系,各构件的冲击系数明显减小。  相似文献   

6.
为了研究大跨度铁路斜拉桥在外部动力作用下索-梁相关振动导致的拉索振动状态,开发了非线性有限元动力时程积分方法,编制了有限元计算程序。以天兴洲大桥为研究对象,建立了斜拉桥全桥2维模型。研究了在理想外激励作用下全桥发生振动时斜拉桥的索-梁相关振动特性与拉索的共振条件。分析了不同工况列车通过桥梁时,车-桥耦合动力作用对拉索的影响。研究结果表明:对于大跨度铁路斜拉桥,发生索-梁相关振动时,斜拉桥中较长拉索更容易发生大幅非线性振动,拉索的1∶1主共振更容易发生,2∶1参数共振发生可能性较小;列车动力作用不会使拉索达到共振条件,不会造成拉索大幅振动。  相似文献   

7.
刚构-连续组合桥梁冲击系数多因素灵敏度分析   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究影响冲击系数的显著性因素,以某刚构-连续组合桥梁为依托工程,采用三轴二分之一车辆模型,基于通用程序建立了车桥耦合振动有限元分析模型,考虑了车桥频率比、桥面不平整度、车体质量、车辆阻尼比、行车速度、车辆行驶方式、桥梁刚度、桥跨布置和下部结构计算模式等9个影响因素,通过正交试验表研究了该桥在诸因素下结构控制截面的挠度(位移)、弯矩冲击系数,并开展了冲击系数的敏感性因素分析。结果表明,现有规范计算此类桥梁的冲击系数值偏小;车桥频率比、桥面不平度及车辆行驶速度是影响该类桥梁冲击系数的敏感性因素,研究成果为将冲击系数定义为多因素的函数表达式指明了方向  相似文献   

8.
为研究列车动力荷载引起的大跨度斜拉桥主梁和桥面板局部动力响应,基于车-桥耦合动力学理论建立了列车-轨道-斜拉桥空间耦合动力学模型。采用固定界面模态综合法和等效正交异性板法建立大跨度斜拉桥精细化三维有限元模型,车辆简化为具有二系悬挂的31自由度弹簧-质量模型,轮轨关系采用可分离的三维轮轨滚动接触模型。以主跨为1 092 m的沪通长江大桥为例,研究了轨道不平顺激励条件下高速列车行驶引起的桥面板和主桁架梁的动力响应特征及分布规律。研究结果表明:固定界面模态综合法既可以有效减少模型自由度数目,又可以反映桥梁局部动力响应;等效正交异性板法虽能较好地反映桥面板的局部振动,但由于没有考虑等效前后主梁整体刚度的一致性,故所计算的主梁振动位移偏差较大;由于桥面板局部竖向刚度较小,桥梁行车线正下方的桥面板竖向加速度远大于主梁桁架节点竖向加速度,建议我国相关铁路桥梁规范在评估大跨度板桁斜拉桥振动加速度时,考虑桥面板局部振动的影响;列车动力荷载作用下主梁桁架杆件应力冲击系数较小,动力效应不显著。  相似文献   

9.
为研究列车动力荷载引起的大跨度斜拉桥主梁和桥面板局部动力响应,基于车-桥耦合动力学理论建立了列车-轨道-斜拉桥空间耦合动力学模型。采用固定界面模态综合法和等效正交异性板法建立大跨度斜拉桥精细化三维有限元模型,车辆简化为具有二系悬挂的31自由度弹簧-质量模型,轮轨关系采用可分离的三维轮轨滚动接触模型。以主跨为1 092 m的沪通长江大桥为例,研究了轨道不平顺激励条件下高速列车行驶引起的桥面板和主桁架梁的动力响应特征及分布规律。研究结果表明:固定界面模态综合法既可以有效减少模型自由度数目,又可以反映桥梁局部动力响应;等效正交异性板法虽能较好地反映桥面板的局部振动,但由于没有考虑等效前后主梁整体刚度的一致性,故所计算的主梁振动位移偏差较大;由于桥面板局部竖向刚度较小,桥梁行车线正下方的桥面板竖向加速度远大于主梁桁架节点竖向加速度,建议我国相关铁路桥梁规范在评估大跨度板桁斜拉桥振动加速度时,考虑桥面板局部振动的影响;列车动力荷载作用下主梁桁架杆件应力冲击系数较小,动力效应不显著。  相似文献   

10.
王涛  刘德贵  张兴标 《振动与冲击》2021,(7):154-163,230
以实际大跨度斜拉桥为研究对象,研究了随机风、列车作用下发生的索-梁相关振动对拉索疲劳可靠性的影响。使用编制的动力有限元计算程序,建立了大跨度铁路斜拉桥全桥3维精细有限元模型,计算了斜拉桥全桥在风、列车动力作用下的振动响应,分析了全桥索-梁相关振动的特性。建立了列车交通荷载概率模型,根据桥位处风速统计数据资料建立了桥梁的风荷载概率模型,对拉索的应力谱进行了计算。依据损伤理论,使用Monte-Carlo方法开展了拉索在风、列车动力作用下的疲劳可靠度分析。研究结果表明:在斜拉桥日常运营状态中,风、列车作用下索-梁相关振动不会导致拉索共振,索-梁相关振动是拉索疲劳可靠性下降的主要原因;对于拉索在长期动力荷载下的疲劳失效概率,风场作用占比很小,列车作用占比较大;各个拉索的成桥状态索力影响了列车作用下的拉索应力幅,进一步影响了斜拉桥在长期动力作用下拉索的疲劳可靠性。  相似文献   

11.
针对某大跨度钢桁梁铁路斜拉桥方案,采用变化结构刚度方法研究梁、索、辅助墩等构件刚度对桥梁结构及行车性能影响。结果表明,增大桁宽能显著增加桥梁横向抗弯刚度,但对车辆走行性影响有限;增加桁高或斜拉索面积能显著提高桥梁竖向基频、降低车桥竖向响应;桥面系对桥梁结构整体刚度贡献不大,对车辆响应影响有限;设置辅助墩可提高斜拉桥竖向刚度、降低车辆竖向加速度及梁端竖向折角等。  相似文献   

12.
李小珍  强士中 《工程力学》1999,3(A03):15-20
从列车走行性要求出发,运用桥梁结构动力与车辆动力力学的研究方法,将车桥作为联合动力体系,以京沪高速铁路南京越江方案160+180+800+180+160米钢斜拉桥为研究对象,进行了高速列车过桥时的车桥空间振动分析,对高速列车通过大跨芳钢斜拉桥的列车走行性进行了探讨。  相似文献   

13.
铁路大跨连续刚构桥动力性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
卫星  李小珍  李俊  强士中 《振动与冲击》2009,28(11):118-121
使用桥梁动力分析程序BDAP,对遂渝铁路主跨128m的薛家坝涪江特大桥进行车桥耦合动力仿真分析,得到桥梁及列车的动力响应。为检验桥跨结构的实际动力性能,进行全桥动力试验,测试其自振特性以及列车以不同速度通过桥跨时桥跨结构的动力响应。将试验结果与车桥耦合振动分析结果进行了比较,二者基本相符。结果表明,该桥具有良好的竖向刚度、横向刚度和结构强度,列车在桥上运行时对桥跨结构有一定的冲击作用,而列车行车具有良好的安全性与舒适度。  相似文献   

14.
大跨度公铁两用斜拉桥车桥动力分析   总被引:18,自引:7,他引:11  
以某公铁两用斜拉桥为研究对象,借助空间杆系有限元方法,用等效格子梁来模拟公路与铁路正交异性板钢桥面,建立了公铁两用斜拉桥的动力分析模型;分别用自编的桥梁动力分析程序BDAP及通用软件SAP93计算了该斜拉桥的空间自振特性,两者取得较好的一致。最后,采用所建立的桥梁动力分析模型。对其在高速ICE列车作用下的车桥空间耦合振动进行了计算与分析。  相似文献   

15.
王解军  刘万忠 《工程力学》2000,3(A03):157-161
本文对运动列车作用下连续梁桥的动力反应和冲击系数进行了研究。列车的单个车辆模拟为4轴10个自由度模型,桥梁模拟为梁单元模型,考虑铁路轨道不平顺,导出了列车桥梁整体系统的运动方程。在各种列车速度作用下,计算了一座连续梁桥的冲击系数。  相似文献   

16.
为合理评估铁路钢管混凝土(concrete-filled-steel-tubular,CFST)系杆拱桥在移动列车荷载下的冲击系数,以我国高速铁路客运专线某计算跨径为136 m的钢管混凝土系杆拱桥为例,基于车-桥耦合振动的分析方法,建立了考虑桥梁桩-土效应的列车-桥梁动力相互作用模型,基于概率统计学假设检验方法,分析了2种车重、30组轨道不平顺、126种行车速度组合工况下系杆拱桥系梁、吊杆、拱肋的冲击系数。结果表明,系杆拱桥主要受力构件的冲击系数存在差异,其中拱肋的冲击系数最大,系梁的冲击系数次之,吊杆最小。冲击系数的概率分布服从极值I型,在95%的保证率下,算例系杆拱桥的系梁、吊杆和拱肋冲击系数分别约为1.05,1.04和1.08,均大于现有规范的取值。在进行大跨度高速铁路系杆拱桥设计时,应考虑对冲击系数进行必要的放大,以利于桥梁安全。  相似文献   

17.
月牙形多拱肋钢管混凝土桁架拱桥动力冲击系数研究   总被引:4,自引:0,他引:4  
针对造型美观但结构形式特殊的月牙形多拱肋钢管混凝土桁架拱桥,应用考虑拉索侧向振动的车桥耦合振动分析方法,讨论了路面粗糙度、行车速度、结构阻尼取值对车辆轮压荷载、拱肋和主梁的挠度及拉索张力冲击系数的影响。结果表明:路面粗糙度对桥梁振动响应的影响显著,提高路面平整度可以降低桥梁冲击系数;行车对桥梁冲击系数的影响与结构振动卓越频率有关,提高车速并不意味振动冲击系数会增大;在相同的行车条件下,不同构件、不同截面的冲击系数有很大离散性,拱肋跨中截面的挠度冲击系数明显高于1/4跨中截面,主梁跨中截面的挠度冲击系数与1/4跨中截面的相差不大,端部的短吊杆张力冲击系数大于跨中的长吊杆;结构阻尼在经验范围内变动时,对冲击系数的影响不明显。  相似文献   

18.
日照作用所引起的温度效应使得铁路桥梁产生明显变形,进而影响行车安全性。为研究此问题,首先借助于ANSYS有限元软件的热-应力耦合技术进行桥梁温度场和位移场分析,以获得日照作用下的轨道变形。其中,桥梁热分析边界条件由热辐射、热对流、热传导等太阳物理学综合因素及相关经验公式确定;采用构件截面切分简化分析模型。然后,建立车桥耦合振动分析模型,将温度效应引起的梁体变形和轨道不平顺叠加效应作为系统激励,采用全过程迭代法求解系统响应。最后,以某铁路简支钢板梁桥为例进行车-桥动力计算,结果表明:日照作用下列车通过桥梁时,桥梁的加速度没有明显差异,但横向和竖向位移均有所增加,同时桥上行车安全性和舒适性均有所降低。  相似文献   

19.
摘要:针对琼洲海峡跨海超大跨度斜拉桥方案,建立整车-整桥系统耦合振动分析的精细化数值仿真模型。采用空间杆系和板壳混合单元有限元方法,建立斜拉桥的动力分析模型,并计算其空间自振特性。利用多体系统动力学软件SIMPACK建立三维空间车辆精细化模型,充分考虑了各种非线性因素的影响。最后,采用基于多体系统动力学与有限元结合的联合仿真技术,计算列车以不同车速单线行车和双向对开通过该大跨度斜拉桥的空间耦合振动响应,检算该桥是否具有足够的横向、竖向刚度及良好的运营平稳性。计算结果表明:车辆运行安全性可以得到保障,舒适性指标为“优良”;桥梁的具有足够的刚度,振动状态良好。所得结果可供设计参考。  相似文献   

20.
大跨度斜拉桥空间振动计算分析   总被引:1,自引:0,他引:1  
本文提出了一种分析列车、大跨度钢桁梁斜拉桥系统空间振动的方法.文中采用21个自由度的列车空间振动模型,对斜拉桥桁架、桥塔、拉索分别采用桁段有限单元、空间梁元、空间杆元来模拟,计算了列车以不同车速通过大跨度斜拉桥的空间振动响应,所得结果可供设计参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号