共查询到19条相似文献,搜索用时 54 毫秒
1.
2.
3.
为快速、准确检测布匹疵点,提出以深度学习目标检测框架YOLOv4为基础的布匹疵点检测方式,首先将5种常见疵点图像(吊经、百脚、结点、破洞、污渍)进行预处理,然后将图像输入到YOLOv4算法中进行分类。YOLOv4采用CSPDarknet53作为主干网络提取疵点特征,SPP模块、FPN+PAN的方式作为Neck层进行深层疵点特征提取,预测层采用3种尺度预测方式,对不同大小的疵点进行检测。研究结果表明:经600个测试集样本的验证,该方法对疵点图像的检测准确率达95%,检测单张疵点图像的速率为33 ms。与SSD、Faster R-CNN、YOLOv3方法进行比较,采用YOLOv4方法准确率更高,速度更快。 相似文献
4.
5.
针对织物瑕疵中部分瑕疵目标小、长宽比极端等问题,提出一种基于改进YOLOv5的织物瑕疵检测方法。该方法在YOLOv5模型基础上引入自注意力机制CoTNet网络,并将颈部网络中的PAFPN网络优化为BiFPN网络,同时将目标损失函数改进为CIoU损失函数,加强模型对邻近键以及上下文之间特征信息的收集,在增强模型对小目标和尺寸变化大类型瑕疵检测能力的同时可获得更准确的边界框回归,加快收敛速度。实验证明,本文改进的模型在织物瑕疵检测数据集上的检测效果和YOLOv5模型相比平均精度均值提升了6.8%,准确率提升了6.7%,模型验证有效。 相似文献
6.
为实现含复杂图案织物的自动化检测,提出基于图元分割与Gabor滤波的织物瑕疵检测方法,对具有复杂周期变化图案的织物进行检测。根据图像纹理的周期变化规律,确定图案单位模板大小,即包含一个周期图案的晶格。对图像进行自适应分割,并通过图元分割获得单元图像元素。通过Gabor滤波器生成特征的响应分布,获取理想的模板晶格,根据提出的投票程序,通过分析其特征向量的Manhattan根据距离图元晶格差异的分布来识别瑕疵图元晶格。实验结果表明:检测方法对星形和箱形图案的织物样本数据集上检测效果较好,显著提高了样本的查全率。 相似文献
7.
瑕疵检测是纺织品生产过程中的重要一环,直接影响产品销量。文章提出了一种基于图像处理的无图案纺织品瑕疵检测方法,主要由预处理、阈值检测和瑕疵定位3个部分组成,首先,对无图案纺织品图像进行预处理操作,通过灰度直方图均衡化和中值滤波对无图案纺织品图像进行平滑去噪;其次,通过阈值处理,对无图案纺织品图像进行二值化处理,将无瑕疵区域看作背景、瑕疵区域看作前景;最后,对瑕疵区域进行特征提取,定位瑕疵并输出。实验表明,基于图像处理的无图案纺织品瑕疵检测方法能有效检测无图案纺织品中的瑕疵位置。 相似文献
8.
在纸张生产过程中,多种影响因素致使纸张容易出现瑕疵,若无法及时发现与补救,则会降低纸张的质量,阻碍造纸行业的发展。为了提升纸张的生产质量,提出基于图像处理技术的纸张瑕疵自动检测方法研究。获取纸张灰色图像,将其转化为直方图形式,均衡增强处理直方图,提升极小瑕疵显现度,以此为基础,检测纸张图像边界,确定瑕疵检测区域,应用Qtsu法分割纸张图像,获取瑕疵图像及其特征,确定纸张瑕疵类型(孔洞、边裂、黑斑、褶皱、亮斑与划痕),训练卷积神经网络学习瑕疵特征,构建纸张瑕疵分类模型,从而实现了纸张瑕疵的自动检测。实验数据显示:与对比方法相比较,应用提出方法获得的纸张瑕疵自动检测时间更短,检测效果更好,充分证实了提出方法的可行性与有效性,适合大力推广与应用。 相似文献
9.
针对机械零件表面瑕疵检测问题,将机器视觉技术用于零件表面图像瑕疵的提取和分析,提出一种基于粒子群优化算法加权模糊C均值聚类的零件缺陷图像智能分割算法,精确定位了机械零件表面的瑕疵区域。缺陷的形状特征是判断其类型的重要依据,提取缺陷的形状特征,设计支持向量机分类器来检测划痕、裂纹、砂眼等表面瑕疵。研究结果表明,该方法具有较强的实用性,在实验数据库上达到90%以上的正确识别率。 相似文献
10.
目的:实现咖啡豆瑕疵检测。方法:提出一种基于改进YOLOv5s网络,以YOLOv5s为基线网络嵌入并优选不同的注意力机制模块与激活函数。结果:使用CBAM模块与激活函数Hardswish的平均精度均值相比基线网络分别提高了5.3%和2.9%。经过200次迭代训练,模型准确率为99.5%,平均精度均值为97.6%,召回率为0.98,识别速率为64幅/s,模型大小为15 M。结论:相比于Faster RCNN、SSD、YOLOv3、YOLOv4、YOLOv5s,试验算法识别准确率更高,模型更加轻量化,对咖啡瑕疵豆的识别效果更好。 相似文献
11.
为提高疵点检测的准确性和通用性,实现使用简洁而有效的形式对织物图像的特点和疵点的本质特征进行综合表达,首先,介绍了深度学习技术,对引入了深度学习的疵点检测方法进行综述,同时对深度学习与疵点检测的内在关系进行阐述;然后,分析总结了深度学习的概念及代表性的计算模型,并对引入深度学习的疵点检测方法进行归纳、总结和分类;最后,对典型的方法进行了分析,讨论了各种方法的优缺点,并对未来的研究趋势进行了展望。指出:随着深度学习的发展,探索更加通用的检测方法是推进深度学习在织物疵点检测领域应用的努力方向。 相似文献
12.
为进一步提高织物瑕疵检测算法对瑕疵类型的通用性,提出一种采用非负字典学习的机织物瑕疵检测算法。首先对正常机织物图像进行窗口分割,将每个子窗口按列展开成列向量,所有列向量联合组成1个矩阵;然后对该矩阵进行非负字典学习,得到个数最佳的非负字典,即基向量;最后应用该字典对待检测样本在最小平方误差下进行近似,并在重构误差的基础上进行疵点检测。重点探讨了窗口大小和字典个数对检测效果的影响。对4 864个样本的实验结果表明,所提算法能在误检率小于10%情况下,取得90%的检出率。 相似文献
13.
14.
按照被检测的织物类型并根据当前研究中所使用的方法,简要综述了近年来基于机器视觉和图像处理的织物疵点检测系统新的应用和发展情况。首先分析了织物疵点自动检测研究的理论和现实意义。给出了织物疵点检测系统中视觉图像获取和疵点图像检测两个关键部分的架构。说明了迫切需要进行检测的两类织物白坯布和色织布,着重讨论了对这两类织物进行疵点检测的各种新方法,并详细说明了其检测效果和存在的不足。最后给出了疵点检测研究的几点建议。 相似文献
15.
16.
介绍了一套在高档纸生产线上应用的纸张表面缺陷(纸病)检测系统——Fopesigh-PDI,该系统能够在线检测边损、孔洞、白斑、黑点、油斑、褶皱等纸张缺陷。介绍了该系统的功能和特点,探讨其在提高纸张生产效率和质量控制中的重要作用。 相似文献
17.
随着对纺织工业产品质量要求的提高以及传统疵点检测方法存在局限性,基于图像处理技术的织物疵点自动检测技术得到了快速的发展。为提高图像处理技术的应用效率,实现纺织行业的数字化与智能制造,介绍了织物图像的预处理技术,对织物疵点检测的主流方法进行了总结,包括基于结构、统计、频谱、模型和学习的方法,并对这些方法的检测原理做了概括,分析了其优缺点与适用范围;介绍了现有成品检测设备,对比分析了仪器和系统处理技术的优缺点;最后,梳理分析了现有的图像处理技术在纺织工业应用中所面临的难题,并提出了对未来发展的构想。 相似文献
18.
19.
In this study, a machine vision system is developed to achieve fabric inspection and defect classification processes automatically. The system consists of an image acquisition hardware and an image processing software. A simple and portable system was designed so that it can be adapted easily to all types of the fabric inspection machines. The software of the system consists of defect detection and classification algorithms. The defect detection algorithm is based on wavelet transform, double thresholding binarization, and morphological operations. It was applied real time via a user interface prepared by using MATLAB® program. The defect classification approach is based on gray level co-occurrence matrix and feed forward neural network. Five commonly occurring defect types, warp lacking, weft lacking, soiled yarn hole, and yarn flow, were detected and classified. The defective and defect-free regions of the fabric were detected with an accuracy of 93.4% and the defects are classified with 96.3% accuracy rate. 相似文献