首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upward and downward directional solidification of hypoeutectic Al-Si alloys were numerically simulated inside a cylindrical container. Undercooling of the liquidus temperature prior to the solidification event was introduced in the numerical model. The finite-volume method was used to solve the energy, concentration, momentum, and continuity equations. Temperature and liquid concentrations inside the mushy zone were coupled with local equilibrium assumptions. An energy equation was applied to determine the liquid fraction inside the mushy zone while considering the temperature undercooling at the solidifying dendrite/liquid interface. Momentum and continuity equations were coupled by the SIMPLE algorithm. Flow velocity distribution at various times, G, R, λ 1, and solidification time at mushy zone/liquid interface during solidification were predicted. The effect of shrinkage during solidification on these solidification parameters was quantified. Transient temperature distribution, solidification time for the mushy zone/liquid interface, and λ 1 were validated by laboratory experiments. It was found that better agreement could be achieved when the fluid flow due to solidification shrinkage was considered. Considering shrinkage in upward solidification was found to only have a marginal effect on solidification parameters, such as G, R, and λ 1; whereas, in the downward solidification, fluid flow due to shrinkage had a significant effect on these solidification parameters. Considering shrinkage during downward solidification resulted in a smaller R, stronger fluid flow, and increased solidification time at the mushy zone/liquid interface. Further, the flow pattern was significantly altered when solidification shrinkage was considered in the simulation. The effect of shrinkage on G and λ 1 strongly depended on the instantaneous location of the mushy zone/liquid interface in the computational domain. The numerical results could be validated by experimental data only when both the undercooling of the liquidus temperature prior to solidification and fluid flow in the liquid caused by the effect of shrinkage during solidification were included in the model.  相似文献   

2.
The nugget formation of resistance spot welding (RSW) on dissimilar material sheets of aluminum and magnesium alloys was studied, and the element distribution, microstructure, and microhardness distribution near the joint interface were analyzed. It was found that the staggered high regions at the contact interface of aluminum and magnesium alloy sheets, where the dissimilar metal melted together, tended to be the preferred nucleation regions of nugget. The main technical problem of RSW on dissimilar metal sheets of aluminum and magnesium alloys was the brittle-hard Al12Mg17 intermetallic compounds distributed in the nugget, with hardness much higher than either side of the base materials. Microcracks tended to generate at the interface of the nugget and base materials, which affected weld quality and strength.  相似文献   

3.
A laser-assisted visualization technique has been used to monitor the solidification behavior at the tail of a molten pool created by scanning high energy density laser beam. A high speed digital camera with spatial resolution of 64×64 pixels and temporal resolution of 40,500 frames/s has been employed along with a novel concept of illuminating the interaction zone by a secondary visible probe laser. This technique enabled in situ monitoring of the solid/liquid interface due to the characteristic difference in the reflectivity between solid and liquid surfaces. It is observed that the solidification behavior is unstable and is highly influenced by the instabilities in the flow, which develop from the complex laser-material interaction process. Quite often the growth front remelted back due to the fluctuating thermal field driven by flow instability. The fluctuations in the growth front and the fluctuations in the laser-material interaction process have been monitored simultaneously, however, no correlation is apparent. The influence of flow instability on the resulting microstructure has been analyzed.  相似文献   

4.
Lotus-type porous aluminum with slender directional pores is fabricated via a continuous casting technique in pressurized hydrogen or a mixed gas containing hydrogen and argon. The influence of solidification conditions such as hydrogen partial pressure, solidification velocity, temperature gradient, and melt temperature on the porosity and pore size is investigated. The porosity and pore size increase upon increasing the hydrogen partial pressure or the melt temperature, whereas the porosity and pore size decrease upon increasing the solidification velocity or the temperature gradient. Furthermore, the mechanism of pore formation in lotus aluminum is examined based on the results of an improved model of hydrogen mass balance in the solidification front, which was originally proposed by Yamamura et al. The results from the present model agree with the experimental results. We conclude that the diffusion of hydrogen rejected in the solidified aluminum near the solid/liquid interface is the most important factor for pore formation because the difference in hydrogen solubility between solid and liquid aluminum is very small.  相似文献   

5.
为了研究铝合金定向凝固组织的变化规律,采用有限元软件ProCAST对Al Si Cu合金定向凝固过程进行模拟,分析了不同浇注温度和抽拉速率对铸件定向凝固过程中的温度梯度、固液界面前沿、糊状区宽度、枝晶生长速率和二次枝晶臂间距的影响。结果表明,当浇注温度越高时,温度梯度越大,而固液界面前沿下凹越小,糊状区宽度也越窄,从而越有利于顺序凝固的发生;随着抽拉速率的增大,枝晶生长速率先增大后减小,当抽拉速率为200 μm/s时,最大生长速度达到0.093 mm/s,铸件凝固组织最佳;当抽拉速率大于300或小于200 μm/s时,都会导致枝晶生长速率缓慢,枝晶生长不平稳,二次枝晶臂粗大。对模拟得到较优的工艺参数进行试验验证,可以制备出具有较好力学性能的铸件。  相似文献   

6.
This article presents the first results of a new experimental technique developed to investigate the evolution of the morphology of the solid and liquid phases during the solidification of a metallic alloy. It consists of ultrafast X-ray microtomography observations of a solidifying aluminum-copper alloy carried out at ESRF. These experiments allow investigating in-situ the formation of the casting microstructure and of the evolution of the morphology of the solid and the liquid phases. It allows also the in-situ determination of the solidification path, of the variation of the copper content in both the liquid and solid phases, and of some other characteristic parameters of the microstructure. Provided that some forthcoming technical improvements on the experimental setup are performed, more quantitative results can be obtained as well as better image quality and resolution.  相似文献   

7.
Directional solidification experiments in a Bridgman-type furnace were used to study particle behavior at the liquid/solid interface in aluminum metal matrix composites. Graphite or siliconcarbide particles were first dispersed in aluminum-base alloysvia a mechanically stirred vortex. Then, 100-mm-diameter and 120-mm-long samples were cast in steel dies and used for directional solidification. The processing variables controlled were the direction and velocity of solidification and the temperature gradient at the interface. The material variables monitored were the interface energy, the liquid/particle density difference, the particle/liquid thermal conductivity ratio, and the volume fraction of particles. These properties were changed by selecting combinations of particles (graphite or silicon carbide) and alloys (Al-Cu, Al-Mg, Al-Ni). A model which considers process thermodynamics, process kinetics (including the role of buoyant forces), and thermophysical properties was developed. Based on solidification direction and velocity, and on materials properties, four types of behavior were predicted. Sessile drop experiments were also used to determine some of the interface energies required in calculation with the proposed model. Experimental results compared favorably with model predictions. BRU K. DHINDAW Visiting Scholar with the Solidification Laboratory at the time this work was performed.  相似文献   

8.
Du  Dafan  Fautrelle  Yves  Dong  Anping  Shu  Da  Zhu  Guoliang  Sun  Baode  Li  Xi 《Metallurgical and Materials Transactions A》2018,49(10):4735-4747

A series of coupled eutectic growths along the univariant eutectic groove in the ternary Al-Cu-Ag alloy was studied to investigate the effect of Ag on the microstructure and crystallization of directionally solidified Al-Cu-Ag alloys. The results indicated that the eutectic morphology and orientation relationship (OR) between eutectic phases were modified as the Ag content in the Al-Cu-Ag alloys increased. At a lower growth velocity (R ≤ 1 μm/s), a banded structure formed and the interlamellar spacing decreased with the increasing Ag content. At a higher growth velocity (R ≥ 3 μm/s), the eutectic cell spacing decreased with increasing Ag content. Increasing the Ag content in the Al-Cu-Ag alloys enhanced the enrichment of the Ag solute in the liquid ahead of the quenched liquid/solid interface. In addition, increasing the Ag content in the Al-Cu-Ag alloys promoted the transformation from a “Beta 6” OR to an “Alpha 4” OR between eutectic phases. Modifications of the eutectic morphology and the OR during directional solidification were attributed to the enrichment of Ag content at the solid/liquid interface and the changes in the interfacial energy due to the increase in Ag solubility in the α-Al phase.

  相似文献   

9.
10.

The X38CrMoV5-1 hot-work tool steel produced by laser powder bed fusion was investigated to assess the effect of quenching and tempering and direct tempering on the as-built microstructure. After the printing process, the material microstructure appeared to be characterized by a fine cellular network consisting of γ-Fe cell boundaries and α′-Fe cores. Scheil–Gulliver curves, X-ray diffraction patterns, and transmission electron microscopy images suggested a transformation of the inner core zone from δ-Fe to α′-Fe through γ-Fe. Air quenching promoted the transition of the solidification structure into a fully martensitic microstructure. Both as-built and quenched samples revealed the presence of manganese oxides and vanadium carbonitrides forming core-shell structures. After tempering, starting from as-built and from quenched condition, a dispersion of nano-sized V and Cr-rich second phases was formed in the microstructure, achieving hardness values comparable to those obtained by the same alloy produced by conventional methods. The specimen tempered directly after the laser powder bed fusion process showed a hardness peak shifted towards higher temperatures compared to the conventionally tempered sample.

  相似文献   

11.
An analytical model for the particle pushing phenomenon that occurs between spherical particles and advancing curved solid/liquid interfaces during solidification of pure melts is presented. An expression for the critical interface velocity for encapturing particles by moving solid/liquid interfaces has been developed for the steady-state condition. As a first step, the actual shape of the interface behind the particle is computed in terms of the thermal conductivity ratio of the particle to that of the melt and the temperature gradient ahead of the interface; based on assumed subject, the critical interface velocity is calculated using the force balance between the attractive forces and repulsive forces acting on the particle. The critical interface velocity under steady-state conditions in aluminum containing SiC particle (10 μm) comes out to be 5800 μm/s according to the present model; this calculated velocity is much closer to the experimental observations of Wu et al., as compared to the predictions of the models proposed by earlier workers.  相似文献   

12.
Rapid solidification can be achieved by quenching a thin layer of molten metal on a cold substrate, such as in melt spinning and thermal spray deposition. An integrated model is developed to predict microstructure formation in rapidly solidified materials through melt substrate quenching. The model solves heat and mass diffusion equations together with a moving interface that may either be a real solid/liquid interface or an artificial dendrite tip/melt interface. For the latter case, a dendrite growth theory is introduced at the interface. The model can also predict the transition of solidification morphology, e.g., from dendritic to planar growth. Microstructure development of Al-Cu alloy splats quenched on a copper substrate is investigated using the model. Oscillatory planar solidification is predicted under a critical range of interfacial heat-transfer coefficient between the splat and the substrate. Such oscillatory planar solidification leads to a banded solute structure, which agrees with the linear stability analysis. Finally, a microstructure selection map is proposed for the melt quenching process based on the melt undercooling and thermal contact conditions between the splat and the substrate.  相似文献   

13.
14.
In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid–liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.  相似文献   

15.
The microstructure and fracture morphology of AISI 8630-IN625 and ASTM A182-F22-IN625 dissimilar metal weld interfaces were compared and contrasted as a function of postweld heat treatment (PWHT) duration. For both systems, the microstructure along the weld interface consisted of a coarse grain heat-affected zone in the Fe-base metal followed by discontinuous martensitic partially mixed zones and a continuous partially mixed zone on the Ni side of the fusion line. Within the partially mixed zone on the Ni side, there exists a 200-nm-wide transition zone within a 20-??m-wide planar solidification region followed by a cellular dendritic region with Nb-Mo?Crich carbides decorating the dendrite boundaries. Although there were differences in the volume of the partially mixed zones, the major difference in the metal weld interfaces was the presence of M7C3 precipitates in the planar solidification region, which had formed in AISI 8630-IN625 but not in ASTM A182-F22-IN625. These precipitates make the weldment more susceptible to hydrogen embrittlement and provide a low energy fracture path between the discontinuous partially mixed zones.  相似文献   

16.
The solidification of spherical droplets with a discrete melting temperature is analyzed using an enthalpy model. Equations describing the cooling of the initially superheated liquid droplet and a numerical heat flow model for its subsequent solidification are presented. Important parameters like times for initiation and completion of solidification, cooling rates and interface velocities in aluminum, iron, and nickel are related to the process variables governing the rate of heat extraction from the droplets. The analysis is performed for the range of Biot numbers of practical interest where Newtonian cooling models are not considered applicable, 0.01 ≤ Bi ≤ 1.o, and the results are presented in the form of normalized or dimensionless quantities. It is shown that the average cooling rate in the liquid prior to solidification can be computed with the Newtonian cooling expressions. However, significant temperature gradients are noted at the droplet surface even for Biot numbers as low as 0.01. Reducing the droplet diameter reduces the time necessary for the initiation and completion of solidification, increases the interface velocities at equivalent fractions solidified and decreases theG L /R ratio. Although smaller droplet diameters promote higher cooling rates in the liquid at the beginning and in the solid at the end of solidification, the effect at the intermediate stages is more complex and depends on the initial superheat, the Biot number and the thermophysical properties of the material. Formerly Professor in the same Department.  相似文献   

17.
This study examines procedures for consistently producing sound (crack and void free) welds using the autogenous (without filler metal) gas tungsten arc (GTA) welding process. Cast alloy Ti-48Al-2Cr-2Nb (at. pct) and extruded alloy Ti-46Al-2Cr-2Nb-0.9Mo (at. pct) have been examined to determine if sound welds can be produced using autogenous GTA welding without any preheat. Experimentation consisted of GTA spot welding samples of gamma titanium aluminide at weld current levels of 45, 55, 65, and 75 A for a duration of 3 seconds. For the cast alloy, current levels of 45, 55, and 65 A for 3 seconds produced similar fusion zone microstructures, which consisted of a dendritic solidification structure. The fusion zone microstructure of the 75 A for 3 seconds current level differed significantly from the lower current levels. It also consisted of a dendritic solidification structure; however, the morphology was quite different. For the extruded alloy, current levels of 45 and 55 A for 3 seconds produced fusion zone microstructures similar to the lower current level samples of the cast γ-TiAl, which consisted of a dendritic solidification structure. The fusion zone microstructures of the 65 and 75 A samples were similar to each other, but they had a dendritic solidification structure of a different morphology than that of the 45 and 55 A samples. For both alloys at all current levels, microhardness profiles showed an increase in hardness from the base metal to the fusion zone. There were no significant differences in the average fusion zone hardness as a function of increasing current level. However, nanoindentation testing did show that certain phases and microconstituents in the fusion zone did have significant variations in hardness in relation to the enrichment and depletion of chromium. This article is based on a presentation made in the symposium “Fundamentals of Gamma Titanium Aluminides,” presented at the TMS Annual Meeting, February 10–12, 1997, Orlando, Florida, under the auspices of the ASM/MSD Flow & Fracture and Phase Transformations Committees.  相似文献   

18.
The fusion zone and heat-affected zone (HAZ) microstructures obtained during tungsten inert gas (TIG) welding of a commercial superalloy IN 738LC were examined. The microsegregation observed during solidification in the fusion zone indicated that while Co, Cr, and W segregated to the γ dendrites, Nb, Ti, Ta, Mo, Al, and Zr were rejected into the interdendritic liquid. Electron diffraction and energy-dispersive X-ray microanalyses using a transmission electron microscope (TEM) of secondary phases, extracted from the fusion zone on carbon replicas, and of those in thin foils prepared from the fusion zone showed that the major secondary solidification constituents, formed from the interdendritic liquid, were cubic MC-type carbides and γ-γ’ eutectic. The terminal solidification reaction product was found to consist of M3B2 and Ni7Zr2 formed in front of the interdendritic γ-γ’ eutectic. Based on the knowledge of the Ni-Ti-C ternary system, a pseudoternary solidification diagram was adapted for IN 738 superalloy, which adequately explained the as-solidified microstructure. The HAZ microfissuring was observed in regions surrounding the fusion zone. Closer and careful microstructural examination by analytical scanning electron microscopy revealed formation of re-solidified constituents along the microfissured HAZ grain boundaries, which suggest that HAZ cracking in this alloy involves liquation cracking. Liquation of various phases present in preweld alloy as well as characteristics of the intergranular liquid film contributing to the alloy’s low resistance to HAZ cracking were identified and are discussed.  相似文献   

19.
Coarsening within the mushy zone during continuous directional solidification experiments was studied on an Al-30 wt pct Cu alloy. High brilliance synchrotron X-radiation microscopy allowed images to be taken in-situ during solidification. Transient conditions were present during directional solidification. Under these conditions, solute-rich settling liquid flow affects the dendritic array and thus coarsening. Coarsening was studied by following the secondary dendrite arm spacing (SDAS) of a developing dendrite at different local solidification times according to the mush depth and instant interface velocity. Solute enrichment and liquid flow cause deceleration and acceleration of the solidification front, which in turn influences both the mush depth and local growth and coarsening due to variations in solutal gradients and thus local undercooling. In addition, spacing between neighboring dendrites (i.e., primary dendrite arm spacing), which determines permeability within the mushy zone, affects the development of high-order branches. This article is based on a presentation given at the International Symposium on Liquid Metal Processing and Casting (LMPC 2007), which occurred in September 2007 in Nancy, France.  相似文献   

20.
Directional solidification experiments have been carried out to determine the pushing/engulfment transition for two different metal/particle systems. The systems chosen were aluminum/zirconia particles and zinc/zirconia particles. Pure metals (99.999 pct A1 and 99.95 pct Zn) and spherical particles (500 μm in diameter) were used. The particles were nonreactive with the matrices within the temperature range of interest. The experiments were conducted so as to ensure a planar solid/liquid (SL) interface during solidification. Particle location before and after processing was evaluated by X-ray transmission microscopy (XTM) for the Al/ZrO2 samples. All samples were characterized by optical metallography after processing. A clear methodology for the experiment evaluation was developed to unambiguously interpret the occurrence of the pushing/engulfment transition (PET). It was found that the critical velocity for engulfment ranges from 1.9 to 2.4 μm/s for Al/ZrO2 and from 1.9 to 2.9 μm/s for Zn/ZrO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号