首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PURPOSE: Proximal Xp harbors many inherited retinal disorders, including retinitis pigmentosa (RP) and congenital stationary night blindness, both of which display genetic heterogeneity. X-linked congenital stationary night blindness (CSNBX) is a nonprogressive disease causing night blindness and reduced visual acuity. Distinct genetic loci have been reported for CSNBX at Xp21.1, which is potentially allelic with the RP3 gene, and at Xp11.23, which is potentially allelic with the RP2 gene. The study to identify the RP2 gene led to an extended study of families with potentially allelic diseases that include CSNBX. METHODS: Haplotype analysis of a family diagnosed with CSNBX was performed with 17 polymorphic markers on proximal Xp covering previously identified loci for CSNBX and XLRP. Two-point and multipoint lod scores were calculated. RESULTS: Informative recombinations in this family define a locus for CSNBX (CSNB4) with flanking markers DXS556 and DXS8080 on Xp11.4 to Xp11.3, an interval spanning approximately 5 to 6 cM. A maximum lod score of 3.2 was calculated for the locus order DXS556-1 cM-(CSNB4-DXS993)-2 cM-DXS1201. CONCLUSIONS: The results describe a new localization for CSNBX (CSNB4) between the RP2 and RP3 loci on proximal Xp. CSNB4 is not allelic with any previously reported XLRP loci; however, the interval overlaps the locus reported to contain the cone dystrophy (COD1) gene, and both diseases are nonrecombinant with DXS993. Because mutations in the RPGR gene to date account for disease in only a small proportion of RP3 families, the possibility that this new locus (CSNB4) also segregates with an as yet unidentified XLRP locus cannot be excluded.  相似文献   

2.
Two genetic loci, RP2 and RP3, for X-linked retinitis pigmentosa (XLRP) have been localized to Xp11.3-11.23 and Xp21.1, respectively. RP3 appears to account for 70% of XLRP families; however, mutations in the RPGR gene (isolated from the RP3 region) are identified in only 20% of affected families. Close location of XLRP loci at Xp and a lack of unambiguous clinical criteria do not permit assignment of genetic subtype in a majority of XLRP families; nonetheless, in some pedigrees, both RP2 and RP3 could be excluded as the causative locus. We report the mapping of a novel locus, RP24, by haplotype and linkage analysis of a single XLRP pedigree. The RP24 locus was identified at Xq26-27 by genotyping 52 microsatellite markers spanning the entire X chromosome. A maximum LOD score of 4.21 was obtained with DXS8106. Haplotype analysis assigned RP24 within a 23-cM region between the DXS8094 (proximal) and DXS8043 (distal) markers. Other chromosomal regions and known XLRP loci were excluded by obligate recombination events between markers in those regions and the disease locus. Hemizygotes from the RP24 family have early onset of rod photoreceptor dysfunction; cone receptor function is normal at first, but there is progressive loss. Patients at advanced stages show little or no detectable rod or cone function and have clinical hallmarks of typical RP. Mapping of the RP24 locus expands our understanding of the genetic heterogeneity in XLRP and will assist in development of better tools for diagnosis.  相似文献   

3.
Genetic linkage studies have implicated at least two loci for X-linked retinitis pigmentosa (XLRP) on proximal Xp. We now report a defined genetic localization for the RP2 locus to a 5-cM interval in Xp11.3-11.23. Haplotype analysis of polymorphic markers in recombinant individuals from two XLRP families has enabled us to identify DXS8083 and DXS6616 as the new distal and proximal flanking markers for RP2. Using STS-content and YAC end-clone mapping, an approximately 1.2 Mb YAC contig has been established encompassing the proximal RP2 boundary and extending from T1MP1 to DXS1240 in Xp11.23. Several ESTs have been positioned and ordered on this contig, one of which is novel to the region, identified by sequence data-base match to a physically mapped YAC insert terminal STS. Integration of the genetic and physical data has placed four retinally expressed genes proximal to DXS6616, and thereby excluded them from a causitive role in RP2. This work now provides a much needed focus for positional cloning approaches to isolation of the defective gene.  相似文献   

4.
A kindred is described in which X-linked nonspecific mental handicap segregates together with retinitis pigmentosa. Carrier females are mentally normal but may show signs of the X-linked retinitis pigmentosa carrier state and become symptomatic in their later years. Analysis of polymorphic DNA markers at nine loci on the short arm of the X chromosome shows that no crossing-over occurs between the disease and Xp11 markers DXS255, TIMP, DXS426, MAOA, and DXS228. The 90% confidence limits show that the locus is in the Xp21-q21 region. Haplotype analysis is consistent with the causal gene being located proximal to the Xp21 loci DXS538 and 5'-dystrophin on the short arm of the X chromosome. The posterior probability of linkage to the RP2 region of the X chromosome short arm (Xp11.4-p11.23) is .727, suggesting the possibility of a contiguous-gene-deletion syndrome. No cytogenetic abnormality has been identified.  相似文献   

5.
The Wieacker-Wolff syndrome (WWS, MIM* 314580), first described clinically in 1985, is an X-linked recessive disorder. In earlier studies, linkage between the WWS gene and DXYS1 at Xq21.2 and DXS1 at Xq11 as well as AR at Xq12 was reported. Here we report on a linkage analysis using highly polymorphic, short terminal repeat markers located in the segment from Xp21 to Xq24. No recombination between the WWS locus and ALAS2 or with AR (z = 4.890 at theta = 0.0) was found. Therefore, the WWS locus was assigned to a segment of approximately 8 cM between PFC (Xp11.3-Xp 11.23) and DXS339 (Xq11.2-Xq13).  相似文献   

6.
X-linked non-specific mental retardation (MRX) is a heterogeneous condition in which mental retardation (MR) appears to be the only consistent manifestation. The genetic and phenotypic heterogeneity exclude any possibility of pooling families and, therefore, of fine-mapping the related disease genes. In order to identify genomic critical regions involved in the MRX condition assigned to Xp21.3-22.1 region, we have implemented the PCR screening of non fragile X MR patients for the presence of deletions in this region. The amplification by PCR of 12 markers located between POLA and DXS704 using genomic DNA from 192 MR males led to the identification, in a 9 year old mentally retarded boy, of a microdeletion which extends from DXS1202 to DXS1065. None of the known genes, POLA, MAGE genes cluster, DAX1, GK and DMD, that map in the Xp21.3-22.1 region is affected by this deletion. This approach, which could easily be applied to several other MRX loci, allowed not only a confirmation of the presence of a potential locus in Xp21.3-22.1 involved in non-specific mental retardation, but also a better definition of the genomic critical region corresponding to this locus.  相似文献   

7.
X-linked ocular albinism with late-onset sensorineural deafness (OASD) is an autonomous disorder that poses significant clinical problems, causing affected individuals to be blind and deaf by early middle age. Classical X-linked ocular albinism (without deafness; OA1) has recently been linked to markers in the Xp22.2-Xp22.3 region of the human genome. In the present report, a large South African family with OASD was investigated at the molecular level and tight linkage was found to the DXS452 locus at Xp22.3 using 25 informative meioses, with a maximum lod score of 7.1 at a recombination fraction of 0.00. These findings suggest that OA1 and OASD are allelic variants or that they may be due to contiguous gene defects.  相似文献   

8.
OBJECTIVE: This study describes the ophthalmic findings in two unrelated white families with X-linked retinitis pigmentosa (XLRP) caused by a missense mutation in the retinitis pigmentosa GTPase regulator (RPGR) gene. DESIGN: Genetic screening and clinical correlation. PARTICIPANTS: Thirty-six families with XLRP seen by the authors were screened for a possible mutation in the RPGR gene to identify three affected hemizygotes with retinitis pigmentosa and four heterozygote carriers in one family and one hemizygote and one carrier in a second family. INTERVENTION: All nine patients underwent a routine ocular examination, including slit-lamp biomicroscopy and a dilated fundus examination. Goldmann visual field kinetic perimetry, static threshold perimetry, and electroretinography also were obtained. The DNA screening was performed on the three affected male patients and four obligate carriers examined from one family and the two examined patients, plus an additional male and obligate carrier, from the second family to determine the presence of any causative mutation in the RPGR gene. MAIN OUTCOME MEASURES: Findings on fundus examination, static threshold and kinetic perimetry, and electroretinography testing were the main outcome measures. RESULTS: A G-->T nucleotide change at position 238 in exon 3 of the RPGR gene resulting in a putative substitute of Gly-->Val at codon 60 was shown to segregate with RP in affected males and the carrier state in female heterozygotes in these two families. The ophthalmologic findings in hemizygotes as well as the carriers in this family were within the spectrum of findings characteristically noted in XLRP families. A tapetal-like reflex was not observed in any of the five female carriers. Psychophysical and electrophysiologic testing on the carriers indicated that cone and rod functions were impaired equivalently. When present in the carriers, visual field restriction was most apparent in, or limited to, the superotemporal quadrant, which corresponded to the retinal pigmentary changes that tended to occur in the inferonasal retina. CONCLUSIONS: A mutation in exon 3 of the RPGR gene, which would result in a putative glycine to valine substitution at codon 60, is associated with a severe clinical phenotype in male patients and a patchy retinopathy without a tapetal-like reflex in carrier females. In these families, heterozygote carriers showed equivalent impairment of their cone and rod function.  相似文献   

9.
Congenital motor nystagmus (CMN) is a hereditary disorder characterized by bilateral ocular oscillations that begin in the first 6 mo of life. It must be distinguished from those genetic disorders-such as ocular albinism (OA), congenital stationary night blindness (CSNB), and blue-cone monochromatism (BCM)-in which nystagmus accompanies a clinically apparent defect in the visual sensory system. Although CMN is presumed to arise from a neurological abnormality of fixation, it is not known whether the molecular defect is located in the eye or in the brain. It may be inherited in an autosomal dominant, autosomal recessive, or X-linked pattern. Three families with CMN inherited in an X-linked, irregularly dominant pattern were investigated with linkage and candidate gene analysis. The penetrance among obligate female carriers was 54%. Evaluation of markers in the region of the genes for X-linked OA, CSNB, and BCM revealed no evidence of linkage, supporting the hypothesis that CMN represents a distinct entity. The gene was mapped to chromosome Xq26-q27 with the following markers: GATA172D05 (LOD score 3.164; recombination fraction [theta] = 0.156), DXS1047 (LOD score 10.296; theta = 0), DXS1192 (LOD score 8.174; theta = 0.027), DXS1232 (LOD score 6.015; theta = 0.036), DXS984 (LOD score 6.695; theta = 0), and GATA31E08 (LOD score 4.940; theta = 0.083). Assessment of haplotypes and multipoint linkage analysis, which gave a maximum LOD score of 10.790 with the 1-LOD-unit support interval spanning approximately 7 cM, place the gene in a region between GATA172D05 and DXS1192. Evaluation of candidate genes CDR1 and SOX3 did not reveal mutations in affected male subjects.  相似文献   

10.
Several new genes and markers have recently been identified on the proximal short arm of the human X chromosome in the area of Xp11.23. We had previously generated a YAC contig in this region extending from UBE1 to the OATL1 locus. In this report two polymorphic dinucleotide repeats, DXS6949 and DXS6950, were isolated and characterized from the OATL1 locus. A panel of YAC deletion derivatives from the distal portion of the contig was used in conjunction with the rest of the YAC map to position the new microsatellites and order other markers localizing to this interval. The marker order was determined to be DXS1367-ZNF81-DXS6849-ZNF21-DXS6616-DXS 6950-DXS6949. In the proximal region below OATL1, we have isolated a pair of YACs from the GATA locus, B1026 and C01160. Mapping within these YACs indicates the orientation of DXS1126 and DXS1240, while a cosmid near the OATL1 region reveals the overlap between the YAC contigs from the two loci. This cosmid contains the gene responsible for Wiskott-Aldrich syndrome (WAS) and localizes the disease gene between OATL1 and GATA. These data enable the expansion of the present physical map of the X chromosome from UBE1 to the GATA locus, covering a large portion of the Xp11.23 region. Genetic cross-overs in Xp11.23 support the marker orientation and the position of WAS, contrary to previous reports. With the integration of both physical and genetic maps we have predicted the following marker order: Xpter-UBE1-SYN1/ARAF1/ TIMP1-DXS1367-ZNF81-DXS.6849-ZNF21-DXSy6616++ +-(OATL1, DXS6950-DXS6949)- WAS-(GATA, DXS1126)-DXS1240-Xcen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
Human X-linked dominant hypophosphatemic rickets (HPDR I) is characterized by hypophosphatemia, hyperphosphaturia, abnormal vitamin D metabolism, and rickets/osteomalacia. Two closely linked hypophosphatemic genes, hypophosphatemia (Hyp) and Gyro (Gy), are known on the mouse X chromosome. The Hyp phenotype is the equivalent of the human X-linked hypophosphatemia, while the human equivalent of the Gyro mouse has not been unambiguously identified. We observed an Italian four-generation pedigree with a new form of X-linked recessive hypophosphatemic rickets (XLRH). We demonstrated that HPDR I and XLRH are two different X-linked genes and that XLRH maps in the Xp11.2 region at 0% recombination fraction from the DXS1039 locus. We discuss this new finding in relation to the identification of the human equivalent of the Gyro mouse and to the recent mapping in Xp11.22 of another X-linked recessive renal disorder named Dent disease.  相似文献   

13.
A family with X linked inheritance of mental retardation (XLMR) is presented. There are 10 mentally retarded males and two affected females in two generations. There are four obligatory carriers, one of whom is described as "slow". Most affected males show macrocephaly and macro-orchidism, which are typical signs of the fragile X syndrome, but have been tested cytogenetically and by analysis of the FMR1 gene and do not have this syndrome. However, some normal males in the family also exhibit macro-orchidism and macrocephaly. Linkage analysis using markers derived from the X chromosome indicates that the causative gene in this family is located in the proximal long arm of the X chromosome, in the interval Xp11-q21. Maximum lod scores of 2.96 with no recombination were found at three loci in Xq13-q21: DXS1111, DXS566, and DXS986. Recombination was observed with DXS1002 (Xq21.31) and DXS991 (Xp11.2), loci separated by about 30 Mb. Although isolation of the gene in this family will be difficult because of the size of the region involved, the localisation should be helpful in investigating other similar families with XLMR, macrocephaly, and macro-orchidism not attributable to FMR1.  相似文献   

14.
Although familial recurrences of Rett syndrome (RTT) comprise only approximately 1% of the reported cases, it is these cases that hold the key for the understanding of the genetic basis of the disorder. Families in which RTT occurs in mother and daughter, aunt and niece, and half sisters are consistent with dominant inheritance and variable expressivity of the phenotype. Recurrence of RTT in sisters is likely due to germ-line mosaicism in one of the parents, rather than to recessive inheritance. The exclusive occurrence of classic RTT in females led to the hypothesis that it is X-linked and may be lethal in males. In an X-linked dominant disorder, unaffected obligate-carrier females would be expected to show nonrandom or skewed inactivation of the X chromosome bearing the mutant allele. We investigated the X chromosome inactivation (XCI) patterns in the female members of a newly identified family with recurrence of RTT in a maternal aunt and a niece. Skewing of XCI is present in the obligate carrier in this family, supporting the hypothesis that RTT is an X-linked disorder. However, evaluation of the XCI pattern in the mother of affected half sisters shows random XCI, suggesting germ-line mosaicism as the cause of repeated transmission in this family. To determine which regions of the X chromosome were inherited concordantly/discordantly by the probands, we genotyped the individuals in the aunt-niece family and two previously reported pairs of half sisters. These combined exclusion-mapping data allow us to exclude the RTT locus from the interval between DXS1053 in Xp22.2 and DXS1222 in Xq22.3. This represents an extension of the previous exclusion map.  相似文献   

15.
X-linked retinitis pigmentosa (XLRP) results from mutations in at least two different loci, designated RP2 and RP3, located at Xp11.3 and Xp21.1, respectively. The RP3 gene was recently isolated by positional cloning, whereas the RP2 locus was mapped genetically to a 5-cM interval. We have screened this region for genomic rearrangements by the YAC representation hybridization (YRH) technique and detected a LINE1 (L1) insertion in one XLRP patient. The L1 retrotransposition occurred in an intron of a novel gene that consisted of five exons and encoded a polypeptide of 350 amino acids. Subsequently, nonsense, missense and frameshift mutations, as well as two small deletions, were identified in six additional patients. The predicted gene product shows homology with human cofactor C, a protein involved in the ultimate step of beta-tubulin folding. Our data provide evidence that mutations in this gene, designated RP2, are responsible for progressive retinal degeneration.  相似文献   

16.
We studied 17 pedigrees with 108 affected males with X-linked juvenile retinoschisis (RS; McKusick No. 31270) and have analyzed all of the known polymorphic markers in the RS region of Xp22.1-p22.2 between DXS987 and DXS41. By haplotype analyses we found 7 individuals who showed crossovers in this interval surrounding RS. We previously reported AFM291wf5 as the centromeric boundary, and this remains unchanged in the present study. A new recombination was identified on the telomeric side at (DXS1195, DXS418). Our data support the locus order Xpter--(DXS987, DXS207, DXS1053, DXS43)--(DXS1195, DXS418)--(RS, DXS257, DXS999)--(AFM291wf5, DXS443)--DXS1052--(DXS1226, DXS274, DXS41)--Xcen; loci grouped in parentheses could not be mutually ordered by our genetic data. Physical mapping has indicated a distance of at most 900-1,000 kb between (DXS1195, DXS418) and AFM291wf5. No recombination was observed between RS and DXS257 which lies in our new interval of interest, but one critical individual was not informative with this marker. Our data now define the smallest RS inclusion interval. This interval is contained on a single YAC from which we have identified expressed sequences as candidate genes for RS.  相似文献   

17.
X-linked lymphoproliferative disease (XLP) is an inherited immunodeficiency characterised by selective susceptibility to Epstein-Barr virus and frequent association with malignant lymphomas chiefly located in the ileocecal region, liver, kidney and CNS. Taking advantage of a large bacterial clone contig, we obtained a genomic sequence of 197620 bp encompassing a deletion (XLP-D) of 116 kb in an XLP family, whose breakpoints were identified. The study of potential exons from this region in 40 unrelated XLP patients did not reveal any mutation. To define the critical region for XLP and investigate the role of the XLP-D deletion, detailed haplotypes in a region of approximately 20 cM were reconstructed in a total of 87 individuals from 7 families with recurrence of XLP. Two recombination events in a North American family and a new microdeletion (XLP-G) in an Italian family indicate that the XLP gene maps in the interval between DXS1001 and DXS8057, approximately 800 kb centromeric to the previously reported familial microdeletion XLP-D.  相似文献   

18.
19.
Autosomal dominant North Carolina macular dystrophy (NCMD) or central areolar pigment epithelial dystrophy (CAPED) is an allelic disorder that maps to an approximately 7.2 cM interval between DNA markers at D6S424 and D6S1671 on 6q14-q16.2. The further refinement of the disease locus has been hindered by the lack of additional recombination events involving the critical region. In this study, we have identified three multigeneration families of German descent who express the NCMD phenotype. Genotyping was carried out with a series of markers spanning approximately 53 cM around the NCMD locus, MCDR1. Genetic linkage between the markers and the disease phenotype in each of the families could be shown. Disease associated haplotypes were constructed and provide evidence for an ancestral founder for the German NCMD families. This haplotype analysis suggests that a 4.0 cM interval flanked by markers at D6S249 and D6S475 harbours the gene causing NCMD, facilitating further positional cloning approaches.  相似文献   

20.
We have searched the human genome for genes that predispose to rheumatoid arthritis (RA) using fluorescence-based microsatellite marker analysis and affected sib-pair linkage study. A panel of 41 Japanese families, each with at least two affected siblings, was typed for genome-wide 358 polymorphic microsatellite marker loci. Markers were amplified by the PCR using fluorescence-tagged primers and sized based on the difference of CA repeats on DNA. Linkage analysis was made using maximum lod score (MLS). The MLS for D1S214 and D8S556 was 3.27 and 3.33, while the MLS for the HLA-DRB1 region was <3.0. According to detailed analysis by single-point analysis using MAPMAKER/SIBS, the MLS for D1S253 and D1S214 was 3.77 and 3.58. The MLS by multipoint analysis was 6.13 for D1S253. The MLS for D8S556 by single-point analysis was 4.20. The MLS for DXS1232 was 2.35 by single-point analysis, whereas the MLS for the region 2 cM right to DXS1232 and the region between DXS1227 and DXS1200 was 3.03 and 2.93 by multi-point analysis. Three principal chromosome regions of linkage, D1S253/214, D8S556 and DXS1232, have been identified which we call RA1, RA2 and RA3 for RA disease loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号