首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
The sol-gel deposition method has been successfully applied to obtain Pb(Zr0.2Ti0.8)O3 thin films on platinized silicon wafers. Addition of different amounts (7-15 wt.%) of organic macromolecular polyvinylpyrrolidone in the precursor solution prior to spin coating proves to be an excellent method for obtaining porous films. The crystal structure of as deposited films was analyzed by X-ray diffraction. The porous films show perovskite phase after annealing at 650 °C. The surface morphology has been studied by Atomic Force Microscopy and Scanning Electron Microscopy. The surface profile indicates a roughness of the film of 5 nm and no microcracks on the surface. The ferroelectric behavior was proved for each film, by hysteresis loops and by the “butterfly” shape of the capacitance-voltage characteristics. The remnant polarization and the coercive field decrease while the amount of added PVP increases.  相似文献   

2.
It has been reported that ferroelectric and piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) thin films, with compositions close to the morphotropic phase boundary (MPB), show lower values than those reported for bulk ceramics with the same composition, which has been attributed to a reduction of the remnant polarization caused by the small size of the grains in the films. An alternative has been proposed to take full advantage of the excellent piezoelectric properties of polycrystalline PMNT in thin film form: a multilayer configuration that uses ferroelectric layers with large remnant polarization, in this case PbTiO3, to generate an internal electric bias within the PMNT layers and, thus, anchor an induced polarization on them, resulting in a consequent large piezoelectric behavior. The detailed study of the properties of these multilayer composite films reveals the complex correlations that arise in these heterostructures, which are key for the design of optimized piezoelectric films based on MPB PMNT.  相似文献   

3.
Porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics with a pore size of the order of the crystalline grain size were prepared and the microstructure and the properties were investigated. Based on this microstructure, the net porosity of the ceramics can be attributed to the intentionally introduced extrinsic porosity and thus the quantitative dependence of ferroelectric and dielectric properties of the ceramics on the porosity can be established respectively. A good agreement with experimental measurements was obtained. Our work represents the first attempt to tailor the properties of ferroelectric ceramics via varying the porosity from the viewpoint of application.  相似文献   

4.
Pb(ZrxTi1 − x)O3 (x = 0.35, 0.40, 0.60, 0.65) thin films were prepared by sol-gel spin on technique. From the X-ray diffraction analysis, PZT films with Zr-rich compositions (x = 0.60 and 0.65) had (111) preferential orientation and the preferential orientation changed to (100) for Ti-rich compositions (x = 0.35 and 0.40). The dielectric measurements on the above compositions at room temperature showed that the dielectric constant values were higher in Zr-rich compositions compared to Ti-rich compositions. The ferroelectric behavior measured in terms of the remnant polarization (Pr) and coercive field (Ec) up to an applied field of 260 kV/cm depicted that the Zr-rich PZT films with (111) preferential orientation had higher Pr and lower Ec values compared to the Ti-rich PZT films with (100) preferential orientation can be understood from the domain switching mechanism.  相似文献   

5.
Silicon-based lead zirconate titanate thick films embedded with zinc oxide nanowhiskers (ZnOw-PZT) were prepared by a hybrid sol-gel route. ZnOw-PZT films with thickness from 1.5 μm to 4 μm are perovskite structure and have smooth surface without any cracks. As the thickness increases, the remanent polarization and dielectric constant increase, but the coercive field and tetragonality decrease. Compared with PZT films, the ZnOw-PZT film has the close tetragonality and electrical properties which are different from those of bulk PZT-based ceramic doped with ZnO powder. The thickness dependences of the ferroelectric and dielectric properties are attributed to the relaxation of internal stress.  相似文献   

6.
Ferrite (Ni0.6Co0.4Fe2O4) phase, ferroelectric (Pb(Mg1/3Nb2/3)0.67Ti0.33O3) phase and magnetoelectric composites of (x)Ni0.6Co0.4Fe2O4 + (1 − x)Pb(Mg1/3Nb2/3)0.67Ti0.33O3 with x = 0.15, 0.30 and 0.45 were prepared using solid-state reaction technique. Presence of Ni0.6Co0.4Fe2O4 and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 was confirmed using X-ray diffraction technique. The scanning electron microscopic images were used to study the microstructure of the composites. Connectivity scheme present in the magnetoelectric (ME) composites are discussed from the microscopic images. Variation of dielectric constant and dielectric loss with temperature for all the composites was studied. Here we report the effect of Ni0.6Co0.4Fe2O4 mole fraction on connectivity schemes between Ni0.6Co0.4Fe2O4 and Pb(Mg1/3Nb2/3)0.67Ti0.33O3 composite. The variation of magnetoelectric voltage coefficient with dc magnetic field shows peak behaviour. The maximum value of magnetoelectric voltage coefficient of 9.47 mV/cm Oe was obtained for 0.15Ni0.6Co0.4Fe2O4 + 0.85Pb(Mg1/3Nb2/3)0.67Ti0.33O3 composites. Finally we have co-related the effect of Ni0.6Co0.4Fe2O4 content and dielectric properties on magnetoelectric voltage coefficient.  相似文献   

7.
Porous Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics with different pore size were prepared by solid-state sintering in air. The microstructural effect on the properties has been systematically investigated by SEM, ferroelectric hysteresis, strain-electric field curves and breakdown strength measurements. The results demonstrate that the microgeometry has a subtle effect on the ferroelectric and dielectric properties. However, the results also demonstrate that the electric field induced strain and the dielectric breakdown strength decreases with the increase of pore size.  相似文献   

8.
The heteroepitaxially grown yttrium oxide layer by an ionized cluster beam (ICB) on a Si(100) substrate was investigated by Rutherford backscattering spectrometry (RBS)/channeling. The channeling minimum value (χmin) of the Y2O3 layer on Si(100) is 0.28, and this is the smallest value among those reported. From the channeling polar plots, it is found that Y2O3 film grown on Si(100) oriented with (110) direction and has a double domain structure. The 110 axis of Y2O3 layer is exactly parallel to the 100 axis of the Si substrate. It is also observed that the interface region of Y2O3 film has more crystalline defects than the surface region.  相似文献   

9.
10 mol% Pb(Fe1/2Nb1/2)O3 (PFN) modified Pb(Mg1/3Nb2/3)O3-PbZr0.52Ti0.48O3 (PMN-PZT) relaxor ferroelectric ceramics with compositions of (0.9 − x)PMN-0.1PFN-xPZT (x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) were prepared. X-ray diffraction investigations indicated that as-prepared ceramics were of pure perovskite phase and the sample with composition of x = 0.8 was close to morphotropic phase boundary (MPB) between rhombohedral and tetragonal phase. Dielectric properties of the as-prepared ceramics were measured, and the Curie temperature (Tc) increased sharply with increasing PZT content and could be higher than 300 °C around morphotropic phase boundary (MPB) area. At 1 kHz, the sample with composition of x = 0.1 had the largest room temperature dielectric constant ?r = 3519 and maximum dielectric constant ?m = 20,475 at Tm, while the sample with composition of x = 0.3 possessed the maximum dielectric relaxor factor of γ = 1.94. The largest d33 = 318 pC/N could be obtained from as-prepared ceramics at x = 0.9. The maximum remnant polarization (Pr = 28.3 μC/cm2) was obtained from as-prepared ceramics at x = 0.4.  相似文献   

10.
We reported the effects of Mn doping on the structure and dielectric properties of (Ba0.835Ca0.165)(Zr0.09Ti0.91)O3 (BCZT) thin films prepared by sol-gel method. The (Ba0.835Ca0.165)Mnx(Zr0.09Ti0.91)1 − xO3 (x = 0, 0.002, 0.005, and 0.01) thin films exhibited a pure pseudo-cubic perovskite structure with random orientation. Scanning electron microscopy and atomic force microscopy observation showed that increasing Mn-doping amount caused a decrease in particle size and a cluster of the particles, while the film surface remained smooth and crack-free. Compared with the undoped film, Mn doped BCZT thin films exhibited smaller dielectric constant and lower dielectric loss. The figure of merit reached the maximum value of 16.7 with a tunability of 53.6% for the film with 0.5 mol % Mn doping, when a bias electric field of 400 kV/cm was applied at 100 kHz. The results indicated that the Mn doped BCZT thin films are suitable for tunable microwave device applications.  相似文献   

11.
Pb(Zr0.4Ti0.6)O3 [PZT(40/60)] thin films were deposited onto LaNiO3 (LNO) coated Si substrates by sol-gel technique. Three kinds of gases, air, O2 and N2, were used as the annealing ambient. The effect of the annealing ambient on their structure and ferroelectric properties was investigated. The results showed that both the films annealed in air and O2 were the complete perovskite phase with (1 0 0) preferential orientation, while those annealed in N2 were random orientation including some pyrochlore phases. As compared with the air ambient, either too much O2 or too much N2 was detrimental to the ferroelectric properties of PZT films. The difference in structure and ferroelectric properties was mainly associated with the intermediate phases and the concentration of domain pinning centers in the films.  相似文献   

12.
In this work, the piezoelectric ceramic system of Pb[(Zr1−xTix)0.74(Mg1/3Nb2/3)0.20(Zn1/3Nb2/3)0.06]O3, 0.47≤x≤0.57, with composition close to the morphotropic phase boundary, was studied. From the results of X-ray diffraction and piezoelectric measurement, ceramics near x=0.51 were found at the morphotropic phase boundary (MPB) between the tetragonal and pseudocubic perovskite. The planar coupling factor (kp=0.72) is high at compositions near the MPB, but the mechanical quality factor (Qm=75) is low. The calculation of the diffuseness of phase transition shows that the region of phase coexistence of this system is broader than that of the ternary system.  相似文献   

13.
Thin films of BaxSr1−xTiO3 (BST, with x=0.5) were fabricated on a RuO2/Ru/SiO2/Si substrate by the spin coating of the multicomponent sol prepared using metal alkoxides. Boron alkoxide was intentionally introduced to establish a better microstructure and to reduce the leakage current. AFM indicated that a crack-free uniform microstructure having a smooth surface was gradually developed with increasing boron content. The relative dielectric permittivity of the 250-nm thick BST thin films fired at 700°C decreased with increasing content of boron, from 420 for the undoped film to 190 for the 10 mol% boron-added film at 1 MHz. This observation was interpreted in terms of a serial capacitance composed of the perovskite BST grain and the interfacial B2O3 glassy phase having a low dielectric permittivity. The leakage current density (J) also decreased with the amount of boron added. The leakage current for the applied voltage greater than 1 V showed a linear variation of logJ with E1/2 at room temperature, suggesting that the interface-controlled Schottky emission was the dominant conduction process for the BST thin films fabricated on the RuO2 electrode.  相似文献   

14.
The dielectric relaxation phenomenon has been studied in lanthanum modified lead zirconate titanate ceramics in the high temperature paraelectric phase. The high temperature dielectric response revealed an anomalous behavior, which is characterized by an increase of the real component of the dielectric permittivity with the increase of the temperature. At the same time, a similar behavior, with very high values, has been observed in the imaginary component of the dielectric permittivity, which can be associated with conduction effects related to the conductivity losses. The frequency and temperature behavior of the complex dielectric permittivity has been analyzed considering the semi-empirical complex Cole-Cole equation. The activation energy value, obtained from the Arrhenius’ dependence for the relaxation time, was found to decreases with the increase of the lanthanum concentration and has been associated with single-ionized oxygen vacancies. The short-range hopping of oxygen vacancies is discussed as the main cause of the dielectric relaxation.  相似文献   

15.
Thin films of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) on Pt/Ti/SiO2/Si (Pt/Si) substrates both with and without a Pb(Zr0.52Ti0.48)O3 (PZT) interfacial layer were investigated. Perovskite and pyrochlore coexistence was observed for PMN-PT thin films without a PZT interfacial layer. Interestingly, most of the pyrochlore phase was observed in single-coated films and in the first layer of multi-coated films. The pyrochlore phase exhibited grains with an average size of about 25 nm, which is smaller than those of the perovskite phase (about 90 nm). In contrast, for PMN-PT thin films grown on a PZT interfacial layer, the formation of a pyrochlore phase at the interface between PMN-PT layers and the substrate is completely suppressed. Moreover, small grains are not observed in the films with a PZT interfacial layer. The measured polarization-electric field (P-E) hysteresis loops of PMN-PT films with and without PZT layers indicate that enhanced electrical properties can be obtained when a PZT interfacial layer is used. These enhanced properties include an increase in the value of remanent polarization Pr from 2.7 to 5.8 μC/cm2 and a decrease in the coercive field Ec from 60.5 to 28.0 kV/cm.  相似文献   

16.
As the introduction of piezoelectric materials into micro electromechanical systems increases, there is a correlating requirement for understanding the mechanical properties of these films. We have investigated the mechanical properties of unpoled PZT [Pb(Zr,Ti)O3] and PMNT [Pb(Mg1/3Nb2/3)1−xTixO3] thin films deposited by sputtering. In this study, nano-indentation, a technique which allows determination of the transverse mechanical properties, is used. It is the easiest method for assessing the biaxial elastic modulus and the hardness of thin films. It was confirmed that neither cracks, nor pile-ups, were observed for indentation depths below 20% of the film's thickness.The continuous stiffness method was used and allowed us to demonstrate that the indentation modulus decreases continuously with increasing grain diameter. This can be explained by the orientation changes of the crystallites with increasing grain diameter. The indentation modulus measured under load, or at almost null load (that is when the ferroelectric domains are or are not oriented by the stress) are coherent with those determined by the same method with a hard bulk ceramic. These results tend to show that the compliance Cij of the hard bulk ceramic can possibly be used with sputtered thin films. The hardness is almost independent of the grain diameter (Hb ≅ 7.5 ± 0.9 GPa) and higher than that for the bulk PZT ceramics considered in this study. PMNT and PZT films have appreciably the same mechanical characteristics. No influence of the film thickness was found on the values of both of these parameters.  相似文献   

17.
0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-PT) thin films with a lead zirconate titanate Pb(Zr0.3Ti0.7)O3 (PZT)/PbOx buffer layer were deposited on Pt/TiO2/SiO2/Si substrates by radio frequency magnetron sputtering technique, and pure perovskite crystalline phase with highly (100)-preferred orientation was formed in the ferroelectric films. We found that the highly (100)-oriented thin films possess not only excellent dielectric and ferroelectric properties but also a large electrocaloric effect (13.4 K at 15 V, i.e., 0.89 K/V) which is attributed to the large electric field-induced polarization and entropy change during the ferroelectric-paraelectric phase transition. The experimental results indicate that the use of PZT/PbOx buffer layer can induce the crystal orientation and phase purity of the PMN-PT thin films, and consequently enhance their electrical properties.  相似文献   

18.
We report high dielectric tunabilities of (1 − x)Ba(Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 (BZT-xBCT) (x = 0.15, 0.30, 0.40, 0.45, 0.50, and 0.55) thin films prepared by a sol-gel method. The films show a pure perovskite structure with random orientation. They have moderate dielectric constant ranging from 350 to 500 and low dielectric loss near 3.0% at 1 kHz with 0 V bias at room temperature. The dielectric tunability of the BZT-0.55BCT thin films is up to 65% at 400 kV/cm and 100 kHz. The films exhibit a high optical transmission in the range of 420 nm-1500 nm. Their optical band gap energies are about 3.90 eV.  相似文献   

19.
To develop high-performance piezoelectric films on conventional Pt(111)/Ti/SiO2/Si(100) substrates, sol-gel-derived highly [100]-textured Nb-doped Pb(ZrxTi1 − x)O3 (PNZT) thin films with different Zr/Ti ratios ranging from 20/80 to 80/20 were prepared and characterized. The phase structure, ferroelectric and piezoelectric properties of the PZNT films were investigated as a function of Zr/Ti ratios, and it was confirmed that there was distinct phase transition of the PNZT system from tetragonal to rhombohedral when the Zr/Ti ratio varied across the morphotropic phase boundary (MPB). The Nb-doped PZT films showed enhanced remanent polarization but reduced coercive field, whose best values reached 75 μC/cm2 and 82 kV/cm, respectively at the composition close to MPB. In addition, the [100]-textured PNZT film at MPB also shows a high piezoelectric coefficient up to 161 pm/V. All these properties are superior to those for undoped PZT films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号