首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
G. Gheri  P. Marzulli 《Calcolo》1982,19(3):301-320
In this paper we describe a method, based on predictor-corrector formulas, for the bilateral approximation of the solution of special initial value problems for ordinary differential equations. For given predictor-corrector formulas, conditions are stated in order to obtain, at any mesh-point, an interval containing the exact solution. The amplitude of the interval gives an error estimate according to the order of the method. Some numerical examples are considered and relevant results are displayed.   相似文献   

3.
A. M. Urbani 《Calcolo》1974,11(4):509-520
In this paper a procedure for the acceleration of the convergence is given. It allows the doubling of the order of the multistep methods for the numerical solution of the ordinary differential equation $$y' = f(x,y),y_0 = y(x_0 );{}_{x_0 }^x \in [a,b].$$ This acceleration is applicable to any method of orderp≥1 whatsoever, and it requires the evaluation of the globalp-th derivate of the functionf(x, y). Special attention is confined to the 20 and 30 order methods, and a numerical exemple is provided.  相似文献   

4.
P. Marzulli 《Calcolo》1974,11(3):403-419
Sommario Si dimostra che ogni formula lineare ak passiA-stabile definisce un metodo esplicito, in una particolare classe di metodi lineari ak passiA-stabili e a coefficienti variabili. A questa classe di metodi viene estesa la teoria della stabilità e convergenza dei metodi tradizionali a coefficienti costanti. Si applicano i risultati per ricavare alcune formule espliciteA-stabili che, impiegate insieme a opportuni correttori, danno luogo a metodi di predizione e correzioneA-stabili.
EachA-stable lineark-step method is shown to define an explicit one in a class ofA-stable lineark-step, with variable coefficients, methods. For this class of methods an outline of stability and convergence theory is given. Application is made in derivingA-stable explicit formulae, which are useful to performA-stable predictor-corrector methods.


Lavoro esegnito con contributo del C.N.R. nell'ambito del Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni.  相似文献   

5.
6.
7.
M. Boari 《Calcolo》1969,6(2):249-260
Sommrio Vengono presentati due metodi di calcolo per la soluzione numerica di sistemi di equazioni differenziali lineari con condizioni al contorno. Tali metodi, adottando opportuni sviluppi in serie di potenze consentono la determinazione delle componenti incognite del vettore-C delle condizioni iniziali con una maggiore precisione, ed una notevole riduzione del tempo di calcolo rispetto al procedimento classico che fa uso di metodi di integrazione numerica passo-passo. Tali vantaggi vengono messi in evidenza in un esempio di calcolo in cui si confrontano i risultati ottenuti con i diversi metodi di soluzione.
Two numerical methods for the solution of a linear differential system with boundary conditions are presented. These methods, through suitable developments in power series, make it possible to determine the unknown components of the vector of the initial conditions with greater accuracy and considerable reduction in calculation time compared with the classical methods using step by step numerical integration. Such calculation techniques are, furthemore, particulary useful where an analysis is required of the behaviour of the solution where the coefficient matrix or the vector of forcing function are varied. These advantages are brought out in an example in which the results obtained by the various methods are compared.
  相似文献   

8.
9.
A. M. Urbani 《Calcolo》1976,13(4):369-376
In this paper a procedure for the acceleration of the convergence is given. It allows the doubling of the order of the multistep methods for the numerical solution of the systems of ordinary differential equations: $$Y' = F(x,Y); Y_0 = Y(x_0 ) \begin{array}{*{20}c} x \\ {x_0 } \\ \end{array} \in [a,b]$$ whereY andF(x,Y) aret-vectors.  相似文献   

10.
M. Marfurt 《Calcolo》1975,12(1):73-82
Sommario In questo lavoro si esaminano la stabilità e la convergenza di un procedimento di integrazione numerica per problemi parabolici lineari a coefficienti variabili. Il procedimento è di tipo seriale, cioè viene discretizzata solo la variabile temporale, risolvendo ad ogni passo una equazione differenziale ordinaria con valori agli estremi. Il procedimento è particolarmente adatto per calcolatori di tipo ibrido. Summary This paper takes under examination stability and convergence of a numerical method for the integration of linear parabolic problems with variable coefficients. The method is a serial procedure, i. e. only the time variable is discretized, and at every step it is necessary to solve an ordinary differential equation with boundary values. At the beginning the procedure was thought for hybrid computers.

Lavoro svolto nell'ambito del Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni del C.N.R.  相似文献   

11.
S. De Zuccoli 《Calcolo》1981,18(1):19-40
We introduce a numerical method for solving nonlinear algebraic equations related to linear least squares fitting with moving weights. The method considered introduces little overhead in the process. The approach is based on updating two matrices so that the product is an approximation of the inverse Jacobian. We may expect:
  1. The tecnique performs good for stochastic systems
  2. We never may yield an unbounded correction
  3. We can use the algorithm for ill-conditioned, also completely singular problems.
Numerical results are given. It seems that experimental efficiency of the method compares well with mostly used iterative algorithms.  相似文献   

12.
13.
V. Patruno 《Calcolo》1972,9(1-2):111-130
Sommario Utilizzando formule di quadratura di Newton-Cotes di tipo estrapolatorio, si propone un metodo numerico per la risoluzione delle equazioni differenziali ordinarie. Il metodo è antopartente e se ne dimostra la stabilità in un caso particolare. Si riportano esempi paragonando il metodo proposto con i metodi di Milne e di Runge-Kutta.
By making use of extrapolation Newton-Cotes formulas a numerical method for integrating ordinary differential equation is presented. The method is self-starting and stability is demonstrated in a particular case. In order to compare this method and those of Milne and Runge-Kutta some example are presented.


Lavoro eseguito con contributo del C.N.R. nell'ambito del Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni.  相似文献   

14.
Following a previous paper [1] we estabilish conditions for the bilateral approximation of the solution of ordinary differential equations usingA-stable predictor-corrector formulas. An extension to parametric formulas is carried out and numerical examples concerned with stiff equations are presented.

Dedicato al Professor S. Faedo in occasione del suo settantesimo compleanno  相似文献   

15.
S. Ciucani  D. Trigiante 《Calcolo》1973,10(3-4):363-368
In a previons article [1] a class of methods for solving equations and systems of equations was deduced starting from function's inversion through a particular Burman's series. Starting from the same series, some others algorithms have been deduced. In this note, a comparison between some of these algorithms, the secant method and the method of moments of second order will be made.  相似文献   

16.
S. Guerra 《Calcolo》1965,2(4):407-440
Simple formulae of the Runge-Kutta type and order greater than four are established for linear differential systems of the first order. They can also be used to solve numerically algebraic equations with real coefficients.   相似文献   

17.
P. Brianzi  L. Rebolia 《Calcolo》1982,19(1):71-86
A numerical performance of integral form for the linear ordinary differential equations $$y^{(n)} = \sum\limits_{i = 0}^{n - 2} { a_{i + 2} (x) y^{(n - 2 - i)} (x)}$$ is proved. Three numerical experiments are also given.  相似文献   

18.
G. Savaré 《Calcolo》1991,28(3-4):205-247
We study a semi-discretization in time of linear parabolic problems by using A(Θ)-stable linear multistep methods of arbitrary order. The original problems are reduced to sequences of elliptic equations, which can be approximated by Galerkin methods. The stability and error estimates are uniform with respect to these space-discretizations.   相似文献   

19.
M. R. Occorsio 《Calcolo》1976,13(3):275-288
Sommario Si studiano le condizioni di convergenza di procedimenti iterativi per la risoluzione di sistemi di equazioni lineari che hanno origine dalla discretizzazione di problemi al contorno per equazioni alle derivate parziali lineari di tipo ellittico.
In this paper there are examined some convergence criteria of iterative processes arising from the discretization of the boundary value problems for linear elliptic equations. A numerical example is also given.
  相似文献   

20.
U. Bozzo  A. R. Tiramani 《Calcolo》1972,9(1-2):139-142
Some reordering schemes are considered for the solution of large sparse sets of linear equations, leading to a considerable gain in c.p.u. time and memory requirement. From the obtained results the techniques ignoring the possible band structure of the matrix are proved to be the best.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号