共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a new method for estimating the radiance function of complex area light sources. The method is based on Jensen's photon mapping algorithm. In order to capture high angular frequencies in the radiance function, we incorporate the angular domain into the density estimation. However, density estimation in position-direction space makes it necessary to find a tradeoff between the spatial and angular accuracy of the estimation. We identify the parameters which are important for this tradeoff and investigate the typical estimation errors. We show how the large data size, which is inherent to the underlying problem, can be handled. The method is applied to different automotive tail lights. It can be applied to a wide range of other real-world light sources. 相似文献
2.
We introduce image-space radiosity and a hierarchical variant as a method for interactively approximating diffuse indirect illumination in fully dynamic scenes. As oft observed, diffuse indirect illumination contains mainly low-frequency details that do not require independent computations at every pixel. Prior work leverages this to reduce computation costs by clustering and caching samples in world or object space. This often involves scene preprocessing, complex data structures for caching, or wasted computations outside the view frustum. We instead propose clustering computations in image space, allowing the use of cheap hardware mipmapping and implicit quadtrees to allow coarser illumination computations. We build on a recently introduced multiresolution splatting technique combined with an image-space lightcut algorithm to intelligently choose virtual point lights for an interactive, one-bounce instant radiosity solution. Intelligently selecting point lights from our reflective shadow map enables temporally coherent illumination similar to results using more than 4096 regularly-sampled VPLs. 相似文献
3.
Caustic maps provide an interactive image-space method to render caustics, the focusing of light via reflection and refraction. Unfortunately, caustic mapping suffers problems similar to shadow mapping: aliasing from poor sampling and map projection as well as temporal incoherency from frame-to-frame sampling variations. To reduce these problems, researchers have suggested methods ranging from caustic blurring to building a multiresolution caustic map. Yet these all require a fixed photon sampling, precluding the use of importance-based photon densities. This paper introduces adaptive caustic maps. Instead of densely sampling photons via a rasterization pass, we adaptively emit photons using a deferred shading pass. We describe deferred rendering for refractive surfaces, which speeds rendering of refractive geometry up to 25% and with adaptive sampling speeds caustic rendering up to 200%. These benefits are particularly noticable for complex geometry or using millions of photons. While developed for a GPU rasterizer, adaptive caustic map creation can be performed by any renderer that individually traces photons, e.g., a GPU ray tracer. 相似文献
4.
Abhijeet Ghosh Tongbo Chen Pieter Peers Cyrus A. Wilson Paul Debevec 《Computer Graphics Forum》2009,28(4):1161-1170
This paper presents a novel method for estimating specular roughness and tangent vectors, per surface point, from polarized second order spherical gradient illumination patterns. We demonstrate that for isotropic BRDFs, only three second order spherical gradients are sufficient to robustly estimate spatially varying specular roughness. For anisotropic BRDFs, an additional two measurements yield specular roughness and tangent vectors per surface point. We verify our approach with different illumination configurations which project both discrete and continuous fields of gradient illumination. Our technique provides a direct estimate of the per-pixel specular roughness and thus does not require off-line numerical optimization that is typical for the measure-and-fit approach to classical BRDF modeling. 相似文献
5.
Point clusters occur in both spatial and non-spatial data. In the former context they may represent segmented particle data, in the latter context they may represent clusters in scatterplots. In order to visualize such point clusters, enclosing surfaces lead to much better comprehension than pure point renderings.
We propose a flexible system for the generation of enclosing surfaces for 3D point clusters. We developed a GPU-based 3D discrete Voronoi diagram computation that supports all surface extractions. Our system provides three different types of enclosing surfaces. By generating a discrete distance field to the point cluster and extracting an isosurface from the field, an enclosing surface with any distance to the point cluster can be generated. As a second type of enclosing surfaces, a hull of the point cluster is extracted. The generation of the hull uses a projection of the discrete Voronoi diagram of the point cluster to an isosurface to generate a polygonal surface. Generated hulls of non-convex clusters are also non-convex. The third type of enclosing surfaces can be created by computing a distance field to the hull and extracting an isosurface from the distance field. This method exhibits reduced bumpiness and can extract surfaces arbitrarily close to the point cluster without losing connectedness.
We apply our methods to the visualization of multidimensional spatial and non-spatial data. Multidimensional clusters are extracted and projected into a 3D visual space, where the point clusters are visualized. The respective clusters can also be visualized in object space when dealing with multidimensional particle data. 相似文献
We propose a flexible system for the generation of enclosing surfaces for 3D point clusters. We developed a GPU-based 3D discrete Voronoi diagram computation that supports all surface extractions. Our system provides three different types of enclosing surfaces. By generating a discrete distance field to the point cluster and extracting an isosurface from the field, an enclosing surface with any distance to the point cluster can be generated. As a second type of enclosing surfaces, a hull of the point cluster is extracted. The generation of the hull uses a projection of the discrete Voronoi diagram of the point cluster to an isosurface to generate a polygonal surface. Generated hulls of non-convex clusters are also non-convex. The third type of enclosing surfaces can be created by computing a distance field to the hull and extracting an isosurface from the distance field. This method exhibits reduced bumpiness and can extract surfaces arbitrarily close to the point cluster without losing connectedness.
We apply our methods to the visualization of multidimensional spatial and non-spatial data. Multidimensional clusters are extracted and projected into a 3D visual space, where the point clusters are visualized. The respective clusters can also be visualized in object space when dealing with multidimensional particle data. 相似文献
6.
Fluid animations in computer graphics show interactions with various kinds of objects. However, fluid flowing through a granular material such as sand is still not possible within current frameworks. In this paper, we present the simulation of fine granular materials interacting with fluids. We propose a unified Smoothed Particle Hydrodynamics framework for the simulation of both fluid and granular material. The granular volume is simulated as a continuous material sampled by particles. By incorporating previous work on porous flow in this simulation framework we are able to fully couple fluid and sand. Fluid can now percolate between sand grains and influence the physical properties of the sand volume. Our method demonstrates various new effects such as dry soil transforming into mud pools by rain or rigid sand structures being eroded by waves. 相似文献
7.
Textured Liquids based on the Marker Level Set 总被引:1,自引:0,他引:1
In this work we propose a new Eulerian method for handling the dynamics of a liquid and its surface attributes (for example its color). Our approach is based on a new method for interface advection that we term the Marker Level Set (MLS). The MLS method uses surface markers and a level set for tracking the surface of the liquid, yielding more efficient and accurate results than popular methods like the Particle Level Set method (PLS). Another novelty is that the surface markers allow the MLS to handle non-diffusively surface texture advection, a rare capability in the realm of Eulerian simulation of liquids. We present several simulations of the dynamical evolution of liquids and their surface textures. 相似文献
8.
Real-Time Rendering and Editing of Vector-based Terrains 总被引:2,自引:0,他引:2
9.
An increasing number of projects have examined the perceptual magnitude of visible artifacts in animated motion. These studies have been performed using a mix of character types, from detailed human models to abstract geometric objects such as spheres. We explore the extent to which character morphology influences user sensitivity to errors in a fixed set of ballistic motions replicated on three different character types. We find user sensitivity responds to changes in error type or magnitude in a similar manner regardless of character type, but that users display a higher sensitivity to some types of errors when these errors are displayed on more human‐like characters. Further investigation of those error types suggests that being able to observe a period of preparatory motion before the onset of ballistic motion may be important. However, we found no evidence to suggest that a mismatch between the preparatory phase and the resulting ballistic motion was responsible for the higher sensitivity to errors that was observed for the most humanlike character. 相似文献
10.
Diorama artists produce a spectacular 3D effect in a confined space by generating depth illusions that are faithful to the ordering of the objects in a large real or imaginary scene. Indeed, cognitive scientists have discovered that depth perception is mostly affected by depth order and precedence among objects. Motivated by these findings, we employ ordinal cues to construct a model from a single image that similarly to Dioramas, intensifies the depth perception. We demonstrate that such models are sufficient for the creation of realistic 3D visual experiences. The initial step of our technique extracts several relative depth cues that are well known to exist in the human visual system. Next, we integrate the resulting cues to create a coherent surface. We introduce wide slits in the surface, thus generalizing the concept of cardboard cutout layers. Lastly, the surface geometry and texture are extended alongside the slits, to allow small changes in the viewpoint which enriches the depth illusion. 相似文献
11.
Visualizing Underwater Ocean Optics 总被引:1,自引:0,他引:1
Diego Gutierrez Francisco J. Seron Adolfo Munoz Oscar Anson 《Computer Graphics Forum》2008,27(2):547-556
Simulating the in‐water ocean light field is a daunting task. Ocean waters are one of the richest participating media, where light interacts not only with water molecules, but with suspended particles and organic matter as well. The concentration of each constituent greatly affects these interactions, resulting in very different hues. Inelastic scattering events such as fluorescence or Raman scattering imply energy transfers that are usually neglected in the simulations. Our contributions in this paper are a bio‐optical model of ocean waters suitable for computer graphics simulations, along with an improved method to obtain an accurate solution of the in‐water light field based on radiative transfer theory. The method provides a link between the inherent optical properties that define the medium and its apparent optical properties, which describe how it looks. The bio‐optical model of the ocean uses published data from oceanography studies. For inelastic scattering we compute all frequency changes at higher and lower energy values, based on the spectral quantum efficiency function of the medium. The results shown prove the usability of the system as a predictive rendering algorithm. Areas of application for this research span from underwater imagery to remote sensing; the resolution method is general enough to be usable in any type of participating medium simulation. 相似文献
12.
In this paper, we propose a new constrained interpolation profile (CIP) method that is stable and accurate but requires less amount of computation compared to existing CIP‐based solvers. CIP is a high‐order fluid advection solver that can reproduce rich details of fluids. It has third‐order accuracy but its computation is performed over a compact stencil. These advantageous features of CIP are, however, diluted by the following two shortcomings: (1) CIP contains a defect in the utilization of the grid data, which makes the method suitable only for simulations with a tight CFL restriction; and (2) CIP does not guarantee unconditional stability. There have been several attempts to fix these problems in CIP, but they have been only partially successful. The solutions that fixed both problems ended up introducing other undesirable features, namely increased computation time and/or reduced accuracy. This paper proposes a novel modification of the original CIP method that fixes all of the above problems without increasing the computational load or reducing the accuracy. Both quantitative and visual experiments were performed to test the performance of the new CIP in comparison to existing fluid solvers. The results show that the proposed method brings significant improvements in both accuracy and speed. 相似文献
13.
This paper presents a new, scalable, single pass algorithm for computing subsurface scattering using the diffusion approximation. Instead of pre‐computing a globally conservative estimate of the surface irradiance like previous two pass methods, the algorithm simultaneously refines hierarchical and adaptive estimates of both the surface irradiance and the subsurface transport. By using an adaptive, top‐down refinement method, the algorithm directs computational effort only to simulating those eye‐surface‐light paths that make significant contributions to the final image. Because the algorithm is driven by image importance, it scales more efficiently than previous methods that have a linear dependence on translucent surface area. We demonstrate that in scenes with many translucent objects and in complex lighting environments, our new algorithm has a significant performance advantage. 相似文献
14.
We present a general method to intuitively create a wide range of locomotion controllers for 3D legged characters. The key of our approach is the assumption that efficient locomotion can exploit the natural vibration modes of the body, where these modes are related to morphological parameters such as the shape, size, mass, and joint stiffness. The vibration modes are computed for a mechanical model of any 3D character with rigid bones, elastic joints, and additional constraints as desired. A small number of vibration modes can be selected with respect to their relevance to locomotion patterns and combined into a compact controller driven by very few parameters. We show that these controllers can be used in dynamic simulations of simple creatures, and for kinematic animations of more complex creatures of a variety of shapes and sizes. 相似文献
15.
In this paper, we propose an online motion capture marker labeling approach for multiple interacting articulated targets. Given hundreds of unlabeled motion capture markers from multiple articulated targets that are interacting each other, our approach automatically labels these markers frame by frame, by fitting rigid bodies and exploiting trained structure and motion models. Advantages of our approach include: 1) our method is an online algorithm, which requires no user interaction once the algorithm starts. 2) Our method is more robust than traditional the closest point-based approaches by automatically imposing the structure and motion models. 3) Due to the use of the structure model which encodes the rigidity of each articulated body of captured targets, our method can recover missing markers robustly. Our approach is efficient and particularly suited for online computer animation and video game applications. 相似文献
16.
Into the Blue: Better Caustics through Photon Relaxation 总被引:1,自引:0,他引:1
The photon mapping method is one of the most popular algorithms employed in computer graphics today. However, obtaining good results is dependent on several variables including kernel shape and bandwidth, as well as the properties of the initial photon distribution. While the photon density estimation problem has been the target of extensive research, most algorithms focus on new methods of optimising the kernel to minimise noise and bias. In this paper we break from convention and propose a new approach that directly redistributes the underlying photons. We show that by relaxing the initial distribution into one with a blue noise spectral signature we can dramatically reduce background noise, particularly in areas of uniform illumination. In addition, we propose an efficient heuristic to detect and preserve features and discontinuities. We then go on to demonstrate how reconfiguration also permits the use of very low bandwidth kernels, greatly improving render times whilst reducing bias. 相似文献
17.
In this paper, we propose a new method to efficiently synthesize character motions that involve close contacts such as wearing a T-shirt, passing the arms through the strings of a knapsack, or piggy-back carrying an injured person. We introduce the concept of topology coordinates, in which the topological relationships of the segments are embedded into the attributes. As a result, the computation for collision avoidance can be greatly reduced for complex motions that require tangling the segments of the body. Our method can be combinedly used with other prevalent frame-based optimization techniques such as inverse kinematics. 相似文献
18.
19.
Generation and animation of realistic humans is an essential part of many projects in today's media industry. Especially, the games and special effects industry heavily depend on realistic human animation. In this work a unified model that describes both, human pose and body shape is introduced which allows us to accurately model muscle deformations not only as a function of pose but also dependent on the physique of the subject. Coupled with the model's ability to generate arbitrary human body shapes, it severely simplifies the generation of highly realistic character animations. A learning based approach is trained on approximately 550 full body 3D laser scans taken of 114 subjects. Scan registration is performed using a non-rigid deformation technique. Then, a rotation invariant encoding of the acquired exemplars permits the computation of a statistical model that simultaneously encodes pose and body shape. Finally, morphing or generating meshes according to several constraints simultaneously can be achieved by training semantically meaningful regressors. 相似文献
20.
We present a novel and effective method for modeling a developable surface to simulate paper bending in interactive and animation applications. The method exploits the representation of a developable surface as the envelope of rectifying planes of a curve in 3D, which is therefore necessarily a geodesic on the surface. We manipulate the geodesic to provide intuitive shape control for modeling paper bending. Our method ensures a natural continuous isometric deformation from a piece of bent paper to its flat state without any stretching. Test examples show that the new scheme is fast, accurate, and easy to use, thus providing an effective approach to interactive paper bending. We also show how to handle non-convex piecewise smooth developable surfaces. 相似文献