首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
提出了一种用于静电放电(ESD)保护的PMOS器件触发SCR器件(PMTSCR)。PMTSCR器件的开启由寄生PMOS的沟道长度、SCR器件寄生阱电阻RPW和RNW决定。器件具有触发电压低的优点。实验结果表明,通过调整PMTSCR器件的结构参数,相比于传统低电压触发SCR器件(LVTSCR),PMTSCR器件的触发电压由6.3 V下降到4.4 V,触发电压减少30%,同时器件的ESD漏电流保持不变。  相似文献   

2.
LVTSCR器件结构相对于普通SCR具有低电压触发特性而被广泛用于集成电路的片上静电放电(ESD)防护中。但是在ESD事件来临时,其维持电压过低易发生闩锁(latch-up)效应致使器件无法正常关断。为改进LVTSCR这一缺陷,提出了一种内嵌PMOS的高维持电压LVTSCR结构,即Embedded PMOS LVTSCR(EP-LVTSCR)。该结构基于内嵌PMOS组成的分流通路抽取阱内载流子,抑制寄生晶体管PNP与NPN正反馈效应,来提高器件抗闩锁能力;通过Sentaurus TCAD仿真软件模拟0.18μm CMOS工艺,验证器件的电流电压(I-V)特性。实验结果表明,与传统LVTSCR相比较,EP-LVTSCR的维持电压从2.01 V提升至4.50 V,触发电压从8.54 V降低到7.87 V。该器件具有良好的电压钳位特性,适用于3.3 V电源电路芯片上静电防护应用。  相似文献   

3.
低电压触发的可控硅器件LVTSCR具有低触发特性,被广泛应用于静电放电(ESD)防护领域。为了避免LVTSCR在工作时发生闩锁效应和潜在失效,基于0.18 μm BCD工艺,提出一种双MOS触发的DMTSCR。TCAD仿真结果显示,相比传统LVTSCR,DMTSCR具有更低的触发电压和更高的维持电压,显著提高了器件的闩锁免疫力,同时消除了传统LVTSCR的潜在失效风险。该器件适用于5 V电源的ESD防护。  相似文献   

4.
对于工作电压为5 V的集成电路,低压触发可控硅(LVTSCR)的触发电压已能满足ESD保护要求,但其较低的维持电压会导致严重的闩锁效应。为解决闩锁问题,对传统LVTSCR进行了改进,通过在N阱下方增加一个N型重掺杂埋层,使器件触发后的电流流通路径发生改变,降低了衬底内积累的空穴数量,从而抑制了LVTSCR的电导调制效应,增加了维持电压。Sentaurus TCAD仿真结果表明,在不增加额外面积的条件下,改进的LVTSCR将维持电压从2.44 V提高到5.57 V,能够避免5 V工作电压集成电路闩锁效应的发生。  相似文献   

5.
传统低压触发可控硅(LVTSCR)维持电压过低,应用于片上ESD防护时存在闩锁风险。文章提出了一种嵌入分流路径的LVTSCR。基于0.18 μm CMOS工艺,使用Sentaurus-TCAD软件模拟人体模型,对器件准静态特性进行了分析。结果表明,新型器件在保持触发电压、ESD防护性良好的情况下,有效提高了维持电压。对关键尺寸D6进行优化,该器件的维持电压提高到5.5 V以上,器件可安全应用于5 V电压电路,避免了闩锁效应。  相似文献   

6.
低压触发可控硅结构在静电保护电路中的应用   总被引:1,自引:1,他引:0  
曾莹  李瑞伟 《微电子学》2002,32(6):449-452
对LVTSCR(Low Voltage Triggered Silicon Controlled Rectifier)结构在深亚微米集成电路中的抗静电特性进行了研究.实验结果表明,LVTSCR结构的参数,如NMOS管沟道长度、P-N扩散区间距和栅极连接方式等,都对LVTSCR结构的静电保护性能有影响.利用优化的LVTSCR结构,获得了6000V以上的ESD失效电压.  相似文献   

7.
杨波  杨潇楠  陈磊  陈瑞博  李浩亮 《微电子学》2019,49(6):838-841, 846
传统LVTSCR的维持电压过低,器件容易受到闩锁效应的影响而无法正常关断。为了提高传统LVTSCR的维持电压,基于0.18 μm BCD工艺,提出一种内嵌P型浅阱的新型LVTSCR (EP-LVTSCR)。采用Sentaurus TCAD,对提出的器件进行建模和测试。结果表明,该EP-LVTSCR的维持电压从传统LVTSCR的1.52 V提升到3.85 V,具有免疫闩锁效应的能力,可应用于3.3 V电源的ESD防护。  相似文献   

8.
陈瑞博  李浩亮  刘志伟  陈磊  邹望辉  许海龙 《微电子学》2019,49(2):288-291, 298
针对5 V电源的静电放电(ESD)防护,提出一种利用PMOS管分流的新型优化横向可控硅(PMOS-MLSCR)。相比于传统MLSCR,PMOS-MLSCR具有更高的维持电压和相对较低的触发电压,有效避免了传统MLSCR面临的闩锁风险。基于0.18 μm BCD工艺,采用TCAD仿真模拟PMOS-MLSCR和传统MLSCR,并通过模拟TLP测试器件特性。仿真结果表明,PMOS-MLSCR的维持电压相对于传统MLSCR提升了3.64 V,触发电压降低了1.49 V,并且满足5 V电源ESD防护的设计窗口。  相似文献   

9.
王军超  李浩亮  陈磊  杨波 《微电子学》2021,51(2):260-264
为了解决传统LVTSCR易发生闩锁效应的问题,提出了一种增强型嵌入P浅阱可控硅(EEP_LVTSCR)结构。通过在传统LVTSCR中NMOS管漏极与阳极之间植入PSD/NSD有源区,引入了额外的复合作用,降低了发射极注入效率;通过NMOS管下方P浅阱增强基区的复合作用,同时降低了PNP、NPN管的电流增益,提高了维持电压。基于0.18 μm BCD工艺,采用TCAD软件模拟了新型EEP_LVTSCR和传统LVTSCR的电流电压(I-V)特性。仿真结果表明,新型EEP_LVTSCR的维持电压从传统的1.73 V提升到5.72 V。该EEP_LVTSCR适用于3.3 V电源的ESD防护。  相似文献   

10.
基于传统双向可控硅(DDSCR)提出了两种静电放电(ESD)保护器件,可应对正、负ESD应力从而在2个方向上对电路进行保护。传统的DDSCR通过N-well与P-well之间的雪崩击穿来触发,而提出的新器件则通过嵌入的NMOS/PMOS来改变触发机制、降低触发电压。两种改进结构均在0.18μmRFCMOS下进行流片,并使用传输线脉冲测试系统进行测试。实验数据表明,这两种新器件具有低触发电压、低漏电流(~nA),抗ESD能力均超过人体模型2kV,同时具有较高的维持电压(均超过3.3V),可保证其可靠地用于1.8V、3.3V I/O端口而避免出现闩锁问题。  相似文献   

11.
There is one LVTSCR device merged with short-channel NMOS and another LVTSCR device merged with short-channel PMOS in a complementary style to offer effective and direct ESD discharging paths from the input or output pads to VSS and VDD power lines. The trigger voltages of LVTSCR devices are lowered to the snapback-breakdown voltages of short-channel NMOS and PMOS devices. This complementary-LVTSCR ESD protection circuit offers four different discharging paths to one-by-one bypass the four modes of ESD stresses at the pad, so it can effectively avoid unexpected ESD damage on internal circuits. Experimental results show that it provides excellent ESD protection capability in a smaller layout area as compared to the conventional CMOS ESD protection circuit. The device characteristics under a high-temperature environment of up to 150/spl deg/C are also experimentally investigated to guarantee the safety of this proposed ESD protection circuit.  相似文献   

12.
李立  刘红侠  董翠  周文 《半导体学报》2011,32(5):054002-6
The characteristics of a low-voltage triggering silicon-controlled rectifier (LVTSCR) under a transmission line pulse (TLP) and the characteristics of high frequency are analyzed. The research results show that the anode series resistance has a significant effect on the key points of the snapback curve. The device characteristics can fit the requirements of a electrostatic discharge (ESD) design window by adjusting the anode series resistance. Furthermore, the set-up time of the ESD has an influence on the turn-on voltage of the LVTSCR. A steep rising edge will cause the turn-on voltage to increase. The parasitic capacitance of the device for different voltage biases and frequencies determines the capacitive impedance, and its accuracy calculation is very important to the ESD design of high frequency circuits. Our research results provide a theoretical basis for the design of an ultra-deep sub-micron (UDSM) LVTSCR structure under ESD stress and the improvement of TLP test technology.  相似文献   

13.
李立  刘红侠 《半导体学报》2011,32(10):104005-5
低压触发硅控整流器件(Low-Voltage Triggering Silicon-controlled Rectifier,LVTSCR)由于具有高的放电效率和低的寄生参数,在ESD防护方面存着诸多优势,尤其对于深亚微米集成电路和高频应用领域。本文对影响LVTSCR回退(snapback)特性曲线的几个重要因素和它的配置方式作了详细的分析和评价,这些参数包括阳极串联电阻、栅电压以及器件的结构和尺寸。并且提出了一种双槽LVTSCR结构,该结构可以获得较高且容易调节的维持电压,从而使其snapback特性很好地符合ESD设计窗口规则。论文的最后讨论了RFIC中采用LVTSCR的ESD保护策略。  相似文献   

14.
在基于0.13μm CMOS工艺制程下,为研究片上集成电路ESD保护,对新式直通型MOS触发SCR器件和传统非直通型MOS触发SCR进行了流片验证,并对该结构各类特性进行了具体研究分析。实验采用TLP(传输线脉冲)对两类器件进行测试验证,发现新式直通型MOS触发SCR结构要比传统非直通型MOS触发SCR具有更低的触发电压、更小的导通电阻、更好的开启效率以及更高的失效电流。  相似文献   

15.
To provide area-efficient output ESD protection for the scaled-down CMOS VLSI, a new output ESD protection is proposed. In the new output ESD protection circuit, there are two novel devices, the PTLSCR (PMOS-trigger lateral SCR) and the NTLSCR (NMOS-trigger lateral SCR). The PTLSCR is in parallel and merged with the output PMOS, and the NTLSCR is in parallel and merged with the output NMOS, to provide area-efficient ESD protection for CMOS output buffers. The trigger voltages of PTLSCR and NTLSCR are lowered below the breakdown voltages of the output PMOS and NMOS in the CMOS output buffer. The PTLSCR and NTLSCR are guaranteed to be turned on first before the output PMOS or NMOS are broken down by the ESD voltage. Experimental results have shown that the PTLSCR and NTLSCR can sustain over 4000 V (700 V) of the human-body-model (machine-model) ESD stresses within a very small layout area in a 0.6 μm CMOS technology with LDD and polycide processes. The noise margin of the proposed output ESD protection design is greater than 8 V (lower than −3.3 V) to avoid the undesired triggering on the NTLSCR (PTLSCR) due to the overshooting (undershooting) voltage pulse on the output pad when the IC is under normal operating conditions with 5 V VDD and 0 V VSS power supplies.  相似文献   

16.
Large array devices (LAD) of MOSFETs are needed in most power ICs. NMOS transistors are used in current sinking while PMOS in current driving. Unlike the NMOS transistors, the high voltage PMOS transistors (HVPMOS) electrostatic discharge (ESD) self-protection of LAD for higher than 30 V applications are less extensively studied. In this paper, the device level improvements of the 60 V HVPMOS LAD of a 0.25 μm BCD process is studied to obtain good ESD protection margins. The effects of device and layout optimization guidelines are also examined. Furthermore, the developed approach is shown to be a low cost general solution for the HVPMOS LAD with poor ESD self-protection capability in a 0.25 μm BCD process.  相似文献   

17.
In this paper, a new structure for an advanced high holding voltage silicon controlled rectifier (AHHVSCR) is proposed. The proposed new structure specifically for an AHHVSCR‐based electrostatic discharge (ESD) protection circuit can protect integrated circuits from ESD stress. The new structure involves the insertion of a PMOS into an AHHVSCR so as to prevent a state of latch‐up from occurring due to a low holding voltage. We use a TACD simulation to conduct a comparative analysis of three types of circuit — (i) an AHHVSCR‐based ESD protection circuit having the proposed new structure (that is, a PMOS inserted into the AHHVSCR), (ii) a standard AHHVSCR‐based ESD protection circuit, and (iii) a standard HHVSCR‐based ESD protection circuit. A circuit having the proposed new structure is fabricated using 0.18 μm Bipolar‐CMOS–DMOS technology. The fabricated circuit is also evaluated using Transmission‐Line Pulse measurements to confirm its electrical characteristics, and human‐body model and machine model tests are used to confirm its robustness. The fabricated circuit has a holding voltage of 18.78 V and a second breakdown current of more than 8 A.  相似文献   

18.
This paper uses TCAD (technology computer-aided design) to calculate practical NMOS and PMOS device behaviors under ESD/EOS events. The simulations include electrothermal effect with lattice temperature parameters. These simulations reproduce TLPG (transmission line pulse generator) current–voltage curves successfully. They also predict the same experimental tendencies of various device structural dimensions in practical engineering applications. The electrothermal device simulation has shown its ability to predict a real device ESD/EOS event. It will become a valuable tool to analyze device internal breakdown properties and find out optimized ESD/EOS conditions.  相似文献   

19.
李立  刘红侠 《半导体学报》2011,32(10):53-57
A low-voltage triggering silicon-controlled rectifier(LVTSCR),for its high efficiency and low parasitic parameters,has many advantages in ESD protection,especially in ultra-deep sub-micron(UDSM) IC and high frequency applications.In this paper,the impact factors of the snapback characteristics of a LVTSCR and the configuring modes are analyzed and evaluated in detail.These parameters include anode series resistance,gate voltage,structure and size of devices.In addition,a double-trench LVTSCR is presented that can increase the hold-on voltage effectively and offers easy adjustment.Also,its snapback characteristics can obey the ESD design window rule very well.The strategy of ESD protection in a RFIC using a LVTSCR is discussed at the end of the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号