首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A nearly pure, dense, polycrystalline bulk Ti3AlC2 sample was prepared by reactively hot pressing the element titanium, aluminum, and graphite powders. The tribophysical properties were investigated by sliding a Ti3AlC2 block dryly against a low-carbon steel disk. It was found that the friction coefficient is as low as ∼0.1, and the wear rate of Ti3AlC2 is only ∼2.5 × 10−6 mm3/N·m for the highest sliding speed of 60 m/s and the largest normal pressure of 0.8 MPa. These unusual properties are attributable to the presence of a compact self-generating film, which covers uniformly over the friction surface of Ti3AlC2 with a thickness of ∼0.5 μm.  相似文献   

3.
Because the layered machinable ternary carbide, Ti2SC, has a significantly shorter c -lattice parameter—as compared with most of the 50+ other so-called Mn+1AXn (MAX) phase family (M=early transition metal; A=A group element and X=C or N and n=1–3) to which it belongs—it was postulated that its mechanical properties would be significantly different than the other MAX phases. In this work, fine-grained (FG) and coarse-grained (CG) polycrystalline fully dense Ti2SC samples were fabricated. Hot pressing Ti2SC powders, at 1500°C under a stress of ∼45 MPa for 5 h resulted in FG (2–4 μm) samples which and upon further annealing for 20 h at 1600°C resulted in CG (10–20 μm) ones. No peaks other than those associated with Ti2SC and an impurity anatase phase, with a volume fraction of ∼6 vol% were observed in the XRD patterns and micrographs. The average Vickers hardness in the 2–300 N range is 8±2 GPa with the FG samples being slightly harder. This hardness is the highest of any of the MAX phases characterized to date. Also in contrast to all MAX phases, cracks extended from the corners of Vickers indents in the FG samples. From these cracks the fracture toughness was estimated and found to increase more or less linearly with load from ≈4 to 6 MPa·m1/2 as the Vickers force was increased from 50 to 300 N, respectively. The room temperature compressive stress of the FG samples was 1.4±0.2 GPa; the failure mode was brittle. Its Young's modulus—also one of the highest for a M2AX phase measured to date—was 316±2 GPa. There was no evidence for incipient kink band formation during simple compression. The latter is attributed, in part, to the fine grain size of the hot-pressed material.  相似文献   

4.
Nearly pure Ti3AlC2 powders have been synthesized by calcining a mixture of titanium, aluminum, and graphite powders using tin powders as additives. Four recipes with different mole ratios of Ti:Al:C:Sn were examined at calcining temperatures from 1300° to 1500°C. The addition of Sn effectively inhibited the generation of thermal explosion when the volume of the starting materials is larger, and considerably reduced the lower-limit calcining temperature. The nearly pure Ti3AlC2 powders can be obtained reliably on a large scale by calcining the starting materials with a mole ratio of 3Ti:1Al:1.8C:0.2Sn at temperatures from 1350° to 1500°C.  相似文献   

5.
A porous ceramic preform was fabricated by printing a powder blend of TiC, TiO2, and dextrin. The presintered preforms contained a bimodal pore size distribution with intra-agglomerate pores ( d 50≈0.7 μm) and inter-agglomerate pores ( d 50≈30 μm), which were subsequently infiltrated by aluminum melt spontaneously in argon above 1050°C. A redox reaction at 1400°C resulted in the formation of dense Ti–Al–O–C composites mainly composed of Ti3AlC2, TiAl3, Al, and Al2O3, which attained a bending strength of 320 MPa, a Young's modulus of 184 GPa, and a Vicker's hardness of 2.5 GPa.  相似文献   

6.
Tribological properties of Ti3SiC2 and Al2O3-reinforced Ti3SiC2 composites (10 and 20 vol% Al2O3) were investigated by using an AISI-52100 bearing steel ball dryly sliding on a linear reciprocating athletic specimen. The friction coefficients were found varying only in a range of 0.1 under the applied loads (2.5, 5, and 10 N), and the wear rates of the composites decreased with increasing Al2O3 content. The enhanced wear resistance is mainly attributed to the hard Al2O3 particles nail the surrounding soft matrix and decentrale the shear stresses under the sliding ball to reduce the wear losses.  相似文献   

7.
The present contribution reports the unlubricated friction and wear properties of Ti3SiC2 against steel. The fretting experiments were performed under varying load (1–10 N) and the detailed wear mechanism is studied using SEM-EDS, Raman spectroscopy, and atomic force microscopy. Under the selected fretting conditions, Ti3SiC2/steel tribocouple exhibits a transition in friction as well as wear behavior with coefficient of friction varying between 0.5 and 0.6 and wear rate in the order of 10−5 mm3·(N·m)−1. Raman analysis reveals that the fretting wear is accompanied by the triboxidation with the formation of TiO2, SiO2, and Fe2O3. A plausible explanation for the transition in friction and wear with load is proposed.  相似文献   

8.
A MgAl2O4 (MA) spinel layer was synthesized on Ti3AlC2 substrate through the molten salt synthesis (MSS) method. The Ti3AlC2 substrate was immersed in MgCl2·6H2O powders and treated at 800°, 850°, and 900°C for 4 h in air. A continuous and 10-μm-thick MgAl2O4 layer was obtained at 900°C, by which the surface hardness of Ti3AlC2 can be effectively improved. The combined scanning electron microscopy observations and crystal morphology simulation further revealed that the as-formed MgAl2O4 presents tetragonal bipyramids morphology with (400)-orientation.  相似文献   

9.
The surface chemistry and dispersion properties of aqueous Ti3AlC2 suspension were studied in terms of hydrolysis, adsorption, electrokinetic, and rheological measurements. The Ti3AlC2 particle had complex surface hydroxyl groups, such as ≡Ti–OH,=Al–OH, and −OTi–(OH)2, etc. The surface charging of the Ti3AlC2 particle and the ion environment of suspensions were governed by these surface groups, which thus strongly influenced the stability of Ti3AlC2 suspensions. PAA dispersant was added into the Ti3AlC2 suspension to depress the hydrolysis of the surface groups by the adsorption protection mechanism and to increase the stability of the suspension by the steric effect. Ti3AlC2 suspensions with 2.0 dwb% PAA had an excellent stability at pH=∼5 and presented the characteristics of Newtonian fluid. Based on the well-dispersed suspension, dense Ti3AlC2 materials were obtained by slip casting and after pressureless sintering. This work provides a feasible forming method for the engineering applications of MAX-phase ceramics, wherein complex shapes, large dimensions, or controlled microstructures are needed.  相似文献   

10.
Nanolaminates with a layered M N +1AX N crystal structure (with M: transition metal, A: group element, X: carbon or nitrogen, and N =1, 2, 3) offer great potential to toughen ceramic composites. A ternary Ti3AlC2 carbide containing ceramic composite was fabricated by three-dimensional printing of a TiC+TiO2 powder mixture and dextrin as a binder. Subsequent pressureless infiltration of the porous ceramic preform with an Al melt at 800°–1400°C in an inert atmosphere, followed by reaction of Al with TiC and TiO2 finally resulted in the formation of a dense multiphase composite of Ti3AlC2–TiAl3–Al2O3. A controlled flaw/strength technique was utilized to determine fracture resistance as a function of crack extension. Rising R -curve behavior with increasing crack extension was observed, confirming the operation of wake-toughening effects on the crack growth resistance. Observations of crack/microstructure interactions revealed that extensive crack deflection along the (0001) lamellar sheets of Ti3AlC2 was the mechanism responsible for the rising R -curve behavior.  相似文献   

11.
Mechanical alloying (MA) has been used to synthesize Ti3SiC2 powder from the elemental Ti, Si, and C powders. The MA formation conditions of Ti3SiC2 were strongly affected by the ball size for the conditions used. MA using large balls (20.6 mm in diameter) enhanced the formation of Ti3SiC2, probably via an MA-triggered combustion reaction, but the Ti3SiC2 phase was not synthesized only by the MA process using small balls (12.7 mm in diameter). Fine powders containing 95.8 vol% Ti3SiC2 can be obtained by annealing the mechanically alloyed powder at relatively low temperatures.  相似文献   

12.
A layered ternary carbide phase, Ti3AlC2, was synthesized by hot pressing from the starting materials of Ti, aluminum, and activated carbon at 1400°C for 2 h. Its composites were also fabricated through addition of micro-sized SiC and partially stabilized zirconia particulates to the pulverized Ti3AlC2 powders. The polycrystalline Ti3AlC2 ceramic obtained has a flexural strength of 172 MPa and a fracture toughness of 4.6 MPa·m1/2, respectively. This compound is relatively soft (Vikers hardness of 2.7 GPa) and exhibits good electrical conductivity with an electrical resistivity of 8.2 μΩ·m. Both the Ti3AlC2/SiC and Ti3AlC2/ZrO2 composites are superior to the monolithic Ti3AlC2 ceramic in strength, fracture toughness, and micro-hardness.  相似文献   

13.
Mechanical alloying (MA) synthesis of Ti3SiC2 from a stoichiometric elemental powder mixture of Ti, Si, and C was conducted by using a planetary mill with a specially designed MA jar, which enables the real-time measurement of temperature and gas pressure during the MA process. Sudden gas pressure and temperature rises were detected when the mixed powders were mechanically alloyed for a certain period, and consequently a large amount of Ti3SiC2 particles was synthesized. Using the Ti–Si–C system as an example, the present study confirmed the combustion reaction triggered by the ball-milling process for the first time.  相似文献   

14.
A methodology to allow the deliberate design of solid precursors to affect the solid-state synthesis of materials has proven elusive. We have designed a conceptual synthesis route for M n +1AX n phases that does not involve the usual intermediate phases. Instead, it is proposed that the common structural units within a solid-state precursor M n +1X n containing vacancy ordering should be the basis for direct synthesis of the desired M n +1AX n phase. The method is demonstrated to be successful in producing titanium aluminum carbide (Ti3AlC2) by the rapid intercalation of Al into TiC0.67 at 400°–600°C below the conventional synthesis temperature. Time-resolved neutron diffraction at 1 min time-resolution has confirmed the reaction sequence. The vacancy ordering in TiC0.67 occurred simultaneously to, and appeared to be greatly facilitated by, the ingress of aluminum. There is considerable scope for adaptation of the method to other M n +1AX n phases.  相似文献   

15.
In this work, a bulk Nb4AlC3 ceramic was prepared by an in situ reaction/hot pressing method using Nb, Al, and C as the starting materials. The reaction path, microstructure, physical, and mechanical properties of Nb4AlC3 were systematically investigated. The thermal expansion coefficient was determined as 7.2 × 10−6 K−1 in the temperature range of 200°–1100°C. The thermal conductivity of Nb4AlC3 increased from 13.5 W·(m·K)−1 at room temperature to 21.2 W·(m·K)−1 at 1227°C, and the electrical conductivity decreased from 3.35 × 106 to 1.13 × 106Ω−1·m−1 in a temperature range of 5–300 K. Nb4AlC3 possessed a low hardness of 2.6 GPa, high flexural strength of 346 MPa, and high fracture toughness of 7.1 MPa·m1/2. Most significantly, Nb4AlC3 could retain high modulus and strength up to very high temperatures. The Young's modulus at 1580°C was 241 GPa (79% of that at room temperature), and the flexural strength could retain the ambient strength value without any degradation up to the maximum measured temperature of 1400°C.  相似文献   

16.
Titanium silicon carbide (Ti3SiC2) and Ti3SiC2-based composite powders were synthesized by isothermal treatment in an inert atmosphere as a function of initial compositions (mixtures). A high content of TiC was obtained in the final product when the initial mixtures contained free carbon. The use of TiC as a reagent was unsuccessful in obtaining Ti3SiC2. High Ti3SiC2 conversion was found for the initial mixtures containing SiC as the main source for silicon and carbon. An initial mixture with a large excess of silicon, 3Ti/1.5SiC/0.5C, was needed to obtain high-purity Ti3SiC2. A reaction mechanism, where Ti3SiC2 nucleates on Ti5Si3C crystals and grows by long-range diffusion of Ti and C, is proposed. The reaction mechanism was proposed to be based on silicon loss during the formation of Ti3SiC2.  相似文献   

17.
In this work, we report on the interdiffusion of Ge and Si in Ti3SiC2 and Ti3GeC2, as well as that of Nb and Ti in Ti2AlC and Nb2AlC. The interdiffusion coefficient, D int, measured by analyzing the diffusion profiles of Si and Ge obtained when Ti3SiC2–Ti3GeC2 diffusion couples are annealed in the 1473–1773 K temperature range at the Matano interface composition (≈Ti3Ge0.5Si0.5C2), was found to be given by
D int increased with increasing Ge composition. At the highest temperatures, diffusion was halted after a short time, apparently by the formation of a diffusion barrier of TiC. Similarly, the interdiffusion of Ti and Nb in Ti2AlC–Nb2AlC couples was measured in the 1723–1873 K temperature range. The D int for the Matano interface composition, viz. ≈(Ti0.5,Nb0.5)2AlC, was found to be given by
At 1773 K, the diffusivity of the transition metal atoms was ≈7 times smaller than those of the Si and Ge atoms, suggesting that the former are better bound in the structure than the latter.  相似文献   

18.
The structure and chemistry of what initially was proposed to be Ti3Al2N2 are incorrect. Using high-resolution transmission electron microscopy, together with chemical analysis, the stoichiometry of this compound is concluded to be Ti4AlN3-delta (where delta = 0.1). The structure is layered, wherein every four layers of almost-close-packed Ti atoms are separated by a layer of Al atoms. The N atoms occupy ∼97.5% of the octahedral sites between the Ti atoms. The unit cell is comprised of eight layers of Ti atoms and two layers of Al atoms; the unit cell is hexagonal with P 63/ mmc symmetry (lattice parameters of a = 0.3 nm and c = 2.33 nm). This compound is machinable and closely related to other layered, ternary, machinable, hexagonal nitrides and carbides, namely M2AX and M3AX2 (where M is an early transition metal, A is an A-group element, and X is carbon and/or nitrogen).  相似文献   

19.
In this article, the first part of a two-part study, we report the reaction path and microstructure evolution during the reactive hot isostatic pressing of Ti3SiC2, starting with titanium, SiC, and graphite powders. A series of interrupted hot isostatic press runs have been conducted as a function of temperature (1200°–1600°C) and time (0–24 h). Based on X-ray diffractometry and scanning electron microscopy, at 1200°C, the intermediate phases are TiC x and Ti5Si3C x . Fully dense, essentially single-phase samples are fabricated in the 1450°–1700°C temperature range. The time-temperature processing envelope for fabricating microstructures with small (3–5 μm), large (∼200 μm), and duplex grains, in which large (100–200 μm) Ti3SiC2 grains are embedded in a much finer matrix, is delineated. The microstructure evolution is, to a large extent, determined by (i) the presence of unreacted phases, mainly TiC x , which inhibits grain growth; (ii) a large anisotropy in growth rates along the c and a directions (at 1450°C, growth normal to the basal planes is about an order of magnitude smaller than that parallel to these planes; at 1600°C, the ratio is 4); and (iii) the impingement of grains. Ti3SiC2 is thermally stable under vacuum and argon atmosphere at temperatures as high as 1600°C for as long as 24 h. The influence of grain size on the mechanical properties is discussed in the second part of this study.  相似文献   

20.
Polycrystalline bulk samples of Ti3SiC2 were fabricated by reactively hot-pressing Ti, graphite, and SiC powders at 40 MPa and 1600°C for 4 h. This compound has remarkable properties. Its compressive strength, measured at room temperature, was 600 MPa, and dropped to 260 MPa at 1300°C in air. Although the room-temperature failure was brittle, the high-temperature load-displacement curve shows significant plastic behavior. The oxidation is parabolic and at 1000° and 1400°C the parabolic rate constants were, respectively, 2 × 10−8 and 2 × 10−5 kg2-m−4.s−1. The activation energy for oxidation is thus =300 kJ/mol. The room-temperature electrical conductivity is 4.5 × 106Ω−1.m−1, roughly twice that of pure Ti. The thermal expansion coefficient in the temperature range 25° to 1000°C, the room-temperature thermal conductivity, and the heat capacity are respectively, 10 × 10−6°C−1, 43 W/(m.K), and 588 J/(kgK). With a hardness of 4 GPa and a Young's modulus of 320 GPa, it is relatively soft, but reasonably stiff. Furthermore, Ti3SiC2 does not appear to be susceptible to thermal shock; quenching from 1400°C into water does not affect the postquench bend strength. As significantly, this compound is as readily machinable as graphite. Scanning electron microscopy of polished and fractured surfaces leaves little doubt as to its layered nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号