首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 65 毫秒
1.
对比分析了PTT长丝、PTT/氨纶、PA/氨纶、棉/氨纶包芯纱4种纱线的拉伸及回弹性能,通过定伸长反复拉伸实验,比较了各自弹性回复率随拉伸次数的变化关系。经测试可以得出:PTT长丝及其包芯纱具有优良的回弹性,因此其具备了在非高弹性领域中取代尼龙、氨纶和降低成本的要求。  相似文献   

2.
分析了不同张力和温度条件下,PET/PTT单丝和复丝的卷曲形貌和卷曲弹性参数。结果表明:随着热处理张力的增加,单丝的卷曲数和卷曲半径减小,单丝和复丝的卷曲伸长率减小,卷曲弹性回复率增加,卷曲模量增加;随着热处理温度的增加,单丝的卷曲数增加,卷曲半径减小,单丝和复丝的卷曲伸长率减小,卷曲弹性回复率增加,卷曲模量增加;在温度100-120℃且张力较小的条件下进行热处理时,PET/PTT纤维的单丝和复丝的卷曲弹性较好。  相似文献   

3.
PTT/PET自卷曲长丝的拉伸和弹性回复性能   总被引:1,自引:1,他引:1  
对相同细度的3种聚对苯二甲酸丙二醇酯(PTT)/聚对苯二甲酸乙二醇酯(PET)自巷曲长丝进行拉伸性能和定伸长回复性能测试。测试结果表明:PTT/PET自卷曲长丝拉伸曲线具有典型的两个阶段和两个屈服点的特征,预加张力的大小对于伸长率的测试结果影响很大;卷曲伸长对该类长丝较高的伸长率有较大贡献,经过湿热处理后的长丝卷曲伸长和断裂伸长明显增加,但是不同的PTT/PET自卷曲长丝的伸长能力有一定差异;PTT/PET自卷曲长丝的弹性回复性能低于纯PTT长丝,而高于PET长丝,弹性回复性主要来源于具有优异弹性回复性的PTT大分子链结构;热处理的PTT/PET长丝在高定伸长率下有着较好的弹性回复性,在定长为30%时的弹性回复率接近100%。  相似文献   

4.
聚醚酯/聚丙烯纤维的制备及其卷曲、收缩性能研究   总被引:1,自引:0,他引:1  
采用聚醚酯和聚丙烯共混熔融纺丝,经过一定拉伸松弛后得到自卷曲共混纤维。通过对卷曲性能和沸水收缩率等的测定,探讨了共混纤维的性能。结果表明:PP含量为16%,拉伸4倍的共混纤维具有较好的卷曲性能;当拉伸倍数增大时,沸水收缩率逐渐增加,但拉伸倍数为5倍时,沸水收缩率下降;随着PP含量的增加,纤维沸水收缩率逐渐降低,经紧张热定形的纤维沸水收缩率小于经松弛热定形处理的纤维。  相似文献   

5.
短纤维卷曲性能测试新方法   总被引:3,自引:0,他引:3  
根据卷曲数和卷曲率的定义,提出了一种适合于测试较短长度纤维卷曲性能的方法,并对该方法的准确度和精密度进行了论证。  相似文献   

6.
采用聚对苯二甲酸丙二醇酯(PTT)和低温易染阳离子聚酯(ECDP)为原料,通过熔融纺丝制备了PTT/ECDP并列复合纤维,研究了牵伸倍数、热定形温度、热处理温度对复合纤维力学性能和卷曲性能的影响。结果表明:随牵伸倍数的增大,复合纤维的卷曲性能提高;随热定形温度的升高,复合纤维的力学性能下降,卷曲性能提高;随热处理温度的降低,复合纤维的卷曲性能提高。最后,复合纤维经圆机织造后,进行阳离子染色处理,织物在98℃染色就可以达到良好的染色效果。  相似文献   

7.
为了充分了解不同比例的PET/PTT双组分弹性纤维在结构及热性能上存在的差异。采用FT-IR对纤维的大分子结构进行了表征,结果表明:与PET纤维相比,PET/PTT双组分弹性纤维的亚甲基个数增多,表现在2 964 cm~(-1)附近的特征峰吸收强度增强。利用TG-DSC对纤维的热性能进行了分析,结果表明:随着PTT含量增多,PET/PTT双组分弹性纤维的分解起始温度、最大失重速率温度、分解终止温度均降低,热裂解程度增大,但失重速率变缓。玻璃化转变温度、熔融温度和结晶温度均降低,但结晶速率增加。  相似文献   

8.
以PET和PTT为原料通过熔融纺丝制备了具有自卷曲性能的并列复合纤维,研究了复合纤维制备工艺,探索并明确了两组分配比、牵伸倍率、热定形温度等参数对纤维断面形貌、力学性能、卷曲回弹性能的影响。试验结果表明:随着复合纤维中PTT组分从40%逐渐增加至60%,纤维断面保持8字形,且两相界面的熔接痕始终保持PTT相凸向PET相的形貌,同时纤维的弹性模量逐渐降低;牵伸倍率的增大能够显著提升纤维的强度、模量以及卷曲收缩率,但纤维的断裂伸长率及卷曲稳定度变差;在144~168℃范围内,热定形温度为156℃时,纤维的弹性模量、强度及卷曲收缩率较高,这主要是结晶度提高导致的。  相似文献   

9.
对毛型聚对苯二甲酸丙二醇酯(PTT)/聚对苯二甲酸乙二醇酯(PET)并列复合短纤维进行卷曲和拉伸性能测试,对比分析了PTT/PET复合短纤、PTT/PET复合长丝和羊毛纤维的卷曲形态及卷曲性能,并通过实验探明处理PTT/PET短纤维的最佳时间和温度。实验结果表明,PTT/PET短纤的卷曲性能随温度的升高而变优,90℃时达到最佳,处理时间达到15min时,可使复合纤维卷曲性能达最佳状态。经过湿热处理后,PTT/PET并列复合短纤单位长度内的卷曲数明显增大,卷曲半径减小,三维卷曲形态更加明显。经过热处理的纤维,断裂强度和弹性模量下降,断裂伸长率增加。  相似文献   

10.
PTT的结构及性能   总被引:7,自引:1,他引:7  
介绍PTT的结构特征和有关的性能优势及其发展前景。指出PTT的甲基呈螺旋排列,分子链呈"Z"状,易于结晶但不发生晶型转变,使之具有较高的拉伸及回复性,较低的模量,适中的玻璃化温度,良好的抗化学性能及低吸水性等,因而加工条件简单,可纺性好,易于染色。  相似文献   

11.
对聚对苯二甲酸丙二酯(PTT)纤维在机织物中的应用进行了研究。利用不同结构的PTT纤维的纯纺和混纺纱线,设计开发了平纹和斜纹组织的交织物,并对其服用性能如弹性回复性、折皱回复性、刚柔度、悬垂性、抗起毛起球性等进行了测试与分析。通过测试分析可以得出:利用PTT纤维可得到柔软、悬垂、抗皱的弹性机织物。  相似文献   

12.
研究了PTT短纤维的力学性能。结果表明PTT短纤维具有优良的弹性和柔软度,其断裂伸长和弹性回复性比PET纤维高得多,一次拉伸回复和10次反复拉伸的总弹性回复率均高于PET纤维。相同定伸长应力松弛时,PTT的内应力小于PET纤维,且随着时间延长几乎没有什么大的变化,松弛时间远远大于PET纤维,表现出较好的弹性。  相似文献   

13.
利用聚对苯二甲酸-1,3-丙二酯(PTT)和聚对苯二甲酸丁二酯(PBT)良好的相容性,开发了PTT/ PBT共混纤维。通过对共混纤维的力学、回弹及染色等性能测试发现,PTT组分的存在明显改善了共混纤维的拉伸性能,而共混纤维的强度相对纯组分纤维略差;当PTT质量分数达到50%后,共混纤维的回弹性优于纯PBT纤维,且在相同拉伸倍数下,PTT的存在降低了共混纤维的沸水收缩率;共混纤维在常压下用分散蓝染色的上染率比纯组分纤维高,当PTT/PBT质量比为50/50时,上染率最高。  相似文献   

14.
焦守业  王府梅 《合成纤维》2011,40(9):23-29,52
首先采用自纺丝和企业中试丝两大系列18种聚对苯二甲酸丙二酯(PTT)/聚对苯二甲酸乙二酯(PET)双组分长丝,试制了18种机织物试样,并进行织物弹性测试,分析复合方式、PTT组分特性黏度和含量、热盘温度4个主要纺丝工艺参数对织物弹性的影响。试验发现,在采用板内复合纺丝方法,PTT和PET两组分特性黏度差较大,热盘温度高的纺丝条件下,织物的定力伸长率比较大;文献资料报道的PTT质量分数为50%时双组分纤维卷曲曲率及卷曲伸长率最大仅仅是某些条件下的试验结果,当PET与PTT弹性模量比(e)较大时,存在例外情况。  相似文献   

15.
PTT纤维及织物的结构、性能与应用   总被引:4,自引:0,他引:4  
方雪娟 《合成纤维》2005,34(2):32-34
针对PTT纤维的特殊结构,分析了其性能与应用中的关键技术。PTT纤维具有良好的手感柔软性、拉伸弹性、尺寸稳定性等,因此适宜开发机织面料。测试了三毛、十七棉和宁波中鑫PTT面料的一般性能。  相似文献   

16.
异收缩涤纶长丝的开发与生产   总被引:2,自引:0,他引:2  
利用常规PET切片和420低速纺丝机、M-402牵伸机制取具有不同热历史的异收缩丝。通过时纺丝、牵伸工艺的合理选择,对牵伸设备的适当改造,可制得沸水收缩率为14%左右,收缩差为7%左右的异收缩丝。加工成的仿丝绸织物具有较好的手感和悬垂性。  相似文献   

17.
PTT短纤维生产技术   总被引:1,自引:0,他引:1  
PTT短纤维生产技术与涤纶短纤维的基本上相同,需要调整的是:切片干燥温度应小于165℃,4h,加料温度235~240℃,熔融温度245~253℃,喷丝挤出量要少20%~30%,冷却温度8~25℃,卷绕速度900~1250m/min,丝条冷却到25~30℃后进盛丝桶。储存温度应低于25~30℃,集束总旦数为涤纶的60%,拉伸前预热不要超过25%,一次拉伸水温度至少60℃,二次拉伸80~100℃,卷曲箱中温度高于85℃,压力为0.3MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号