首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative importance of sensory air pollution, thermal load and noise was studied under controlled conditions in two identical environmental chambers. In one chamber subjects were exposed to various levels of either thermal load or poor indoor air quality. For each condition tested in this chamber, the subjects were exposed to a number of noise levels in an adjacent chamber with neutral thermal conditions and good indoor air quality in order to determine a noise level causing the same degree of discomfort. A total of 68 comparisons of the conditions in the two chambers were made by the same group of 16 subjects after one-minute exposure in each chamber. In the operative temperature range of 23–29°C, a 1°C change in operative temperature was found to have the same effect on human comfort as a change in perceived air quality of 2.4 decipol or a change in noise level of 3.9 dB. For levels of perceived air quality up to 10 decipol, a 1 -decipol change in perceived air quality had the same effect on human comfort as a change in noise level of 1.2 dB. A relationship between traffic noise level and percentage dissatisfied was established  相似文献   

2.
The effects of ventilation in computer classrooms were studied with university students (n = 355) in a blinded study, 31% were women and 3.8% had asthma. Two classrooms had a higher air exchange (4.1-5.2 ac/h); two others had a lower air exchange (2.3-2.6 ac/h). After 1 week, ventilation conditions were shifted. The students reported environmental perceptions during the last hour. Room temperature, RH, CO2, PM10 and ultra-fine particles were measured simultaneously. Mean CO2 was 1185 ppm at lower and 922 ppm at higher air exchange. Mean temperature was 23.2 degrees C at lower and 22.1 degrees C at higher air exchange. After mutual adjustment (temperature, RH, CO2, air exchange), measured temperature was associated with a perception of higher temperature (P < 0.001), lower air movement (P < 0.001), and poorer air quality (P < 0.001). Higher air exchange was associated with a perception of lower temperature (P < 0.001), higher air movement (P = 0.001), and better air quality (P < 0.001). In the longitudinal analysis (n = 83), increased air exchange caused a perception of lower temperature (P = 0.002), higher air movement (P < 0.001), better air quality (P = 0.001), and less odor (P = 0.02). In conclusion, computer classrooms have CO2 levels above 1000 ppm and temperatures above 22 degrees C. Increased ventilation from 7 l/s per person to 10-13 l/s per person can improve thermal comfort and air quality. PRACTICAL IMPLICATIONS: Computer classrooms are crowded indoor environments with a high thermal load from both students and computer equipment. It is important to control room temperature either by air conditioning, sun shields, or sufficiently high ventilation flow. A high ventilation flow is also crucial to achieving good perceived air quality. Personal ventilation flow should be at least 10 l/s. Possible loss of learning ability due to poor indoor air quality in university buildings deserves more attention.  相似文献   

3.
Xia YZ  Niu JL  Zhao RY  Burnett J 《Indoor air》2000,10(4):289-296
Air movement can provide desirable cooling in "warm" conditions, but it can also cause discomfort. This study focuses on the effects of turbulent air movements on human thermal sensations through investigating the preferred air velocity within the temperature range of 26 degrees C and 30.5 degrees C at two relative humidity levels of 35% and 65%. Subjects in an environmental chamber were allowed to adjust air movement as they liked while answering a series of questions about their thermal comfort and draft sensation. The results show that operative temperature, turbulent intensity and relative humidity have significant effects on preferred velocities, and that there is a wide variation among subjects in their thermal comfort votes. Most subjects can achieve thermal comfort under the experimental conditions after adjusting the air velocity as they like, except at the relative high temperature of 30.5 degrees C. The results also indicate that turbulence may reduce draft risk in neutral-to-warm conditions. The annoying effect caused by the air pressure and its drying effect at higher velocities should not be ignored. A new model of Percentage Dissatisfied at Preferred Velocities (PDV) is presented to predict the percentage of feeling draft in warm isothermal conditions.  相似文献   

4.
《Energy and Buildings》1995,23(2):105-115
Past thermal comfort research has shown differences in the thermal sensation votes given in field and laboratory settings. However, such research tends to compare the votes of different groups of people in different environments rather than comparing the same people in each environment. Therefore, a two-phase study was conducted of the thermal comfort of 30 BRE employees in their home, in their office, and in a climate chamber. In the first phase each subject spent two 3 h sessions in each environment and the temperature was adjusted between sessions within the range 18–26°C. Data loggers were used to record the air and mean radiant temperature, air velocity and relative humidity; subjective ratings of thermal sensation were obtained using questionnaires. The subjects wore the same clothing in each session and were allowed to conduct only sedentary activities. The reported thermal sensation votes were compared with those predicted using ISO 7730. The observed neutral temperatures for each of the three environments differed by up to 2°C and were up to 1°C different to those predicted. This finding has implications for energy use. In the second phase, the subjects were studied in their home and office only. No restrictions were imposed on clothing, previous or current activities, or environmental conditions. The observed thermal sensation votes were very poorly correlated with those predicted and with operative temperature.  相似文献   

5.
In order to compare patterns of indoor air perception, including perceptions of temperature, air movement, indoor air quality (IAQ), mental concentration, and comfort, 33 subjects either with persistent allergic rhinitis or controls were exposed to different temperatures and constant relative humidity in an experimental office environment. Results were obtained by means of a self-administered visual analogue scale, analyzed using mean score comparisons and principal component analysis. At 14 degrees C, the rhinitis group reported higher scores for sensations of air dryness than controls. At 18 degrees C, in the rhinitis group, there was a correlation between dry, stagnant air, and difficult mental concentration. This group also correlated heat, dry air, and poor IAQ, in contrast to the control group, which correlated comfort, easy mental concentration, and freshness. At 22 degrees C, the rhinitis group correlated heat, dryness, stagnant air, and overall discomfort. This group also correlated non-dry air, freshness, and comfort, whereas the control group correlated heat, humidity, good indoor air, freshness, and comfort. This study suggests that the rhinitis group perceives indoor temperatures of 14 degrees C as dryer than controls do, and that at 18 and 22 degrees C this group positively correlates different adverse perceptions of IAQ. By means of a self-administered questionnaire in an experimental condition, the present study compares subjective patterns of indoor air perception from individuals with respiratory allergy (allergic rhinitis) to control individuals. It reports different patterns of perception of indoor air quality (IAQ) between the two groups, suggesting that allergic individuals could have different IAQ perception.  相似文献   

6.
Radiant heating systems are increasingly widely utilized in buildings for its energy conservation potential and enhanced thermal comfort. This paper presented an experiment to compare the thermal comfort performance of radiant heating system with convective heating system through objective measurement and subjective survey. Six physical parameters which might influence occupants' thermal satisfaction, including the Mean Radiant Temperature(MRT), humidity, air movement, A-weighted sound level,temperature fluctuation and vertical temperature difference, were measured. In addition, 97 subjects participated in the subjective survey part of this experiment, experiencing all the three environments heated by air source heat pump, radiator and floor heating.And they were asked to vote in six thermal comfort related aspects, i.e. thermal sensation, humidity, draught, local discomfort,overall thermal satisfaction and overall preferences, plus the acoustic environment, since the operation noise of heating system might lead to complains of the occupants. It was found that in continuous heating, no significant difference between radiant and convective heating system was observed in the Mean Radiant Temperature(MRT), indoor humidity and noise issue. Though radiant heating systems resulted in lower draught risk and less local discomfort complains in the feet region due to the less significant temperature fluctuations and vertical temperature gradients, radiant heating did not have significantly higher overall thermal satisfaction votes and was not significantly more preferred by occupants.  相似文献   

7.
Thermal comfort, self‐reported acute health symptoms, cognitive performance, and physiological reactions were examined at four temperatures (26, 30, 33, and 37°C) at a relative humidity of 70%. Thirty‐two sub‐tropically acclimatized subjects experienced each condition for 175 minute, in balanced order, in a climatic chamber. The perception of heat gradually increased with increasing temperature, but the subjects felt hot only at 37°C. The temperature of 33°C was on average rated as acceptable and only just uncomfortable. The acceptability of air quality decreased linearly with increasing temperature. The intensity of acute health symptoms reported by the subjects increased with increasing temperature, but it was no more than moderate even at the highest temperature; dryness of skin and eye were alleviated. The eardrum temperature, skin temperature and moisture, heart rate, end‐tidal carbon dioxide, and weight loss increased significantly with increasing temperature, whereas the percentage of adjacent heart inter‐beat intervals differing by >50 ms decreased significantly. These results suggest that the perceived heat, self‐reported symptoms, and physiological reactions occurred concurrently. They show additionally that acclimatization to heat may shift the boundary of thermal discomfort to a higher temperature. The role of psychological adaptation and of the contextual aspects of this process still requires clarification in future experiments.  相似文献   

8.
A comparative study of the occupant comfort (neutral) in a conventional high-rise office block and a contemporary environmentally-concerned building for Sheffield UK climate conditions was carried out. A questionnaire was designed for occupants to rate their workplace environment in terms of the thermal, visual, acoustic and overall perception and satisfaction level. The basic physical parameters were measured at the same time, e.g. air temperature, humidity, illuminance and sound level. It is inferred that (1) There is a noticeable difference between the conventional building and environmentally-concerned building in terms of their thermal and visual environment. (2) A clear distinction of the occupant sensation and satisfaction level towards their thermal and visual environment is presented between these two buildings. (3) The effect of basic physical variables on the occupants’ perception and satisfaction level becomes less significant when minimal standards are attained. (4) The acoustic satisfaction level however, was not perceived differently by the occupants of the two building types.  相似文献   

9.
《Energy and Buildings》2005,37(3):287-294
This study's aim is to propose a new comfort index for indicating the combined effect of cold and noise stress on the human state of mind. Twenty-two male students were exposed to 20 combined conditions involving four operative temperature levels and five noise levels. The subjects reported their sensations regarding each combined condition. The results show that the auditory condition significantly affected the hot sensation as well as the noise sensation, and that the thermal condition also significantly affected the noise sensation. Both temperature and noise affected obviously the universal comfort and discomfort sensations. Consequently, two kinds of equi-comfort charts were derived. One of the charts, which represents the equal universal comfort sensation derived from the combination of thermal and auditory comfort sensation, demonstrates the exclusivity of the combined effects. The other chart indicates temperature and noise levels in order to quantitatively evaluate the combined effect of cold and noisy conditions based on the experimental results. This chart can reasonably predict human comfort sensations within this experimental condition.  相似文献   

10.
This study aimed at investigating the thermal comfort for the whole body as well as for certain local areas, skin temperatures, and sensible heat losses in various asymmetric radiant fields. Human subject experiments were conducted to assess the overall comfort sensation and local discomfort, and local skin temperatures were measured. Through thermal manikin experiments, we discovered a new method for the precise measurement of the local sensible heat loss in nonuniform thermal environments. The local sensible heat losses were measured by the use of a thermal manikin that had the same local skin temperatures as the human subjects. The experimental conditions consisted of the anterior–posterior, right–left, and up–down asymmetric thermal environments created by radiation panels. A total of 35 thermal environmental conditions were created ranging from 25.5 to 30.5 °C for air temperature, from 11.5 to 44.5 °C for surface temperature of radiation panels, from 40% RH to 50% RH for humidity, and less than 0.05 m/s for inlet air velocity to the climatic chamber. The local skin temperature changed depending on the environmental thermal nonuniformity, even if the mean skin temperature remained almost the same. It is essential to use the skin temperature distribution as well as mean skin temperature for expressing thermal comfort in nonuniform environments. The local sensible heat loss changed depending on the environmental thermal nonuniformity, even if the mean sensible heat loss remained almost the same. The relationship between the local skin temperature and local sensible heat loss cannot be depicted by a simple line; instead, it varies depending on the environmental thermal nonuniformity. The local heat discomfort in the head area was dependent on both the local skin temperature and local sensible heat loss. However, the local cold discomfort in the foot area was related only to the local skin temperature.  相似文献   

11.
Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory irritation and possibly watering eyes in an additive way. Interactions were found for odor intensity (p = 0.1), perceived facial skin temperature and dryness, general well-being, tear film stability, and nasal cavity dimension. The presence of interactions implies that in the future guidelines for acceptable indoor air concentrations of VOCs should depend on room air temperature.  相似文献   

12.
Recently, studies suggest that the average indoor temperature is typically >30°C and that the maximum temperature can reach 37.5°C in hot-humid areas. However, the effects caused by increasing the humidity at high indoor temperatures are not clear. In this study, twelve female and twelve male subjects were exposed to different operative temperature (26.6, 30.6, and 37.4°C) and relative humidity (50% and 70%) in a climate chamber. Data concerning thermal sensation, perceived air quality, and Sick Building Syndrome (SBS) were collected during 190-min-long exposure to each thermal condition. Heart rate, respiration rate, respiratory ventilation rate, mean skin temperature, and eardrum temperature were measured. It was found that increasing the relative humidity from 50% to 70% at 26 and 30°C had no significant effects on the physiological responses, thermal comfort, perceived air quality, or SBS symptoms of the subjects. However, when the temperature was elevated to 37°C, the heart rate, respiration rate, respiratory ventilation rate, mean skin temperature, and eardrum temperature increased significantly as a result of the increase in the relative humidity from 50% to 70%. The subjects felt hotter and more uncomfortable, and they found indoor air quality was more difficult to accept. The subjects are acclimatized to hot environments and more tolerant to heat. Therefore, the results are applicable to the acclimated people living in hot-humid climate.  相似文献   

13.
In this study, we examined the cognitive performance of subtropically acclimatized subjects at an extreme high indoor temperature and the effect of decreased humidity on the cognitive performance at the high temperature. Forty-eight healthy subjects experienced the three exposure conditions: 26°C/relative humidity (RH) 70%, 39°C/RH50%, and 39°C/RH70% in a climate chamber. During 140-minute-long exposures to each thermal condition, they were required to perform cognitive tests that assess the perception, spatial orientation, concentration, memory, and thinking abilities. Meanwhile, their heart rate, core temperature, skin temperature, blood pressure, and body weight were measured and subjective responses, that is, thermal comfort, perceived air quality, and acute health symptoms were investigated. At the relative humidity of 70%, increasing indoor temperature from 26°C to 39°C caused a significant decrease in the accuracy of these cognitive tests. However, when the relative humidity decreased from 70% to 50% at 39°C, the accuracy of the cognitive tests increased significantly. Accordingly, the physiological and subjective responses of the subjects changed significantly with the changes in indoor temperature and humidity, which provided a basis to the variation in the cognitive performance. These results indicated that decreasing indoor humidity at extreme high temperature could improve the impaired cognitive performance.  相似文献   

14.
《Energy and Buildings》2001,33(3):283-287
Various aspects of comfort are analysed through a set of questions asked of 90 urban pedestrians. Answers show the contribution that clothes, time adaptation and other non thermal effects make in lowering the skin wetness and the perception of warmth. A shift exists between theory (established with subjects in climatic chambers) and statements. Searching for a comfortable feeling in this city, the hottest in France (metropolis), but without any river, lake or seaside, results from water evaporation at the clothing level for the immediate body environment, and also for the outside air cooling. The enormous need of water for a natural air conditioning was one reason for the aqueduct built by the Romans.  相似文献   

15.
In this study, the potential exposure of bus commuters to significant air parameters (CO(2), CO and RSP) and thermal environment (air temperature and relative humidity) when buses traveled through tunnels in Hong Kong was investigated. It was found that air-conditioned buses provided a better commuting environment than non-air-conditioned buses. The blate increasing trend was found on air-conditioned buses as the in-bus air parameters concentration levels rose slowly throughout the traveling process. In contrast, the in-bus environment varied rapidly on non-air-conditioned buses as it depended on the out-bus environment. The measured in-bus CO concentration was 2.9 ppm on air-conditioned buses, while it was 4.6 ppm (even reaching the highest level at 12.0 ppm) on non-air-conditioned buses. Considering the in-bus thermal environment, air-conditioned buses provided thermally comfortable cabins (about 24 degrees C and 59% of relative humidity). However, on non-air-conditioned buses, the thermal environment varied with the out-bus environment. The mean in-bus air temperature was about 34 degrees C and 66% of relative humidity, and the in-bus air temperature varied between 29 and 38 degrees C. Also, the lower-deck to upper-deck air parameters concentration ratios indicated that the vertical dispersion of air pollutants in tunnels influenced non-air-conditioned buses as higher air parameters concentration levels were obtained on the lower-deck cabins.  相似文献   

16.
The characteristics of thermal comfort and indoor air quality (IAQ) in bedrooms, occupants’ perceptions and their impact on sleep quality are not often studied. It becomes even more interesting if climatic conditions allow Naturally/Mechanically Ventilated (NMV) concepts as opposed to Air-conditioning (AC) and this becomes very significant from an energy perspective. This paper reports our findings from such a study conducted in a hot and humid climate. Objective measurements of thermal comfort and IAQ were carried out during sleeping period in 12 NMV and 12 AC bedrooms over a period of 2 months. Questionnaire responses were sought from each subject at the end of the objective measurements to assess their perceptions on thermal comfort and indoor air quality of the bedrooms during sleep and their sleeping conditions. Although the “Historical” and “Immediate” responses for the NMV and AC bedrooms indicate that there was a good level of acceptability for both Thermal Comfort and Perceived Air Quality (PAQ), it was found that NMV bedroom was a better sleeping environment. The subjects’ immediate perception of PAQ and thermal comfort were reasonably correlated with their historical perceptions. The subjects’ perception of PAQ was fairly closely correlated to their perception of Thermal Comfort. There was a considerable increase in the carbon dioxide level in an AC bedroom relative to a NMV bedroom. However, there was no clear evidence to substantiate that sleeping duration decreased with increasing level of carbon dioxide, but the findings do suggest that high level of carbon dioxide may hinder the duration of sleep.  相似文献   

17.
The objective of the present study was to assess the effect of absolute and relative humidity, temperature and humidification on workers' skin and upper airway symptoms, and perceptions in the office environment. Associations between physical factors, and symptoms and perceptions were assessed in logistic regression models. At temperatures between 18 and 26 degrees C, relative humidity of 17-40%, and absolute humidity of 3.3-5.6 g H2O/kg air, skin symptoms and nasal dryness and congestion were alleviated by both kinds of humidity. Pharyngeal dryness increased when temperatures rose and was alleviated with a rise in relative humidity. Eye symptoms showed no dependence on humidity. Any kind of humidity increased odor sensation. Stuffiness increased when the air was humidified. In non-humidified conditions (21.3-22.7 degrees C, 20.0-31.7%, 3.3-5.6 g H2O/kg air), skin and nasal symptoms showed no association with humidity or temperature. Pharyngeal dryness diminished when humidity rose. In addition, the association between humidity and odor disappeared. In humidified conditions (21.5-23.7 degrees C, 26.6-41.2%, 4.2-7.0 g H2O/kg air), nasal dryness and congestion were alleviated by both absolute and relative humidity, and odor perception increased. Skin dryness and rash, pharyngeal dryness, and nasal dryness and congestion are alleviated in higher humidity. Steam humidification results in a risk for increased perception of odor and stuffiness.  相似文献   

18.
Human response to air movement supplied locally towards the face was studied in a room with an air temperature of 20 °C and a relative humidity of 30%. Thirty-two human subjects were exposed to three conditions: calm environment and facially supplied airflow at 21 °C and at 26 °C. The air was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 °C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend the applicability of personalized ventilation aiming to supply clean air for breathing at the lower end of the temperature range recommended in the standards. Providing individual control is essential in order to avoid discomfort for the most sensitive occupants.  相似文献   

19.
Abstract Sensory responses to clean air and air polluted by five building materials under different combinations of temperature and humidity in the ranges 18-28°C and 30-70%RH were studied in the laboratory. A specially designed test system was built and a set of experiments was designed to observe separately the impact of temperature and humidity on the perception of air quality/odour intensity, and on the emission of pollutants from the materials. This paper reports on the impact on perception. The odour intensity of air did not change significantly with temperature and humidity; however, a strong and significant impact of temperature and humidity on the perception of air quality was found. The air was perceived as less acceptable with increasing temperature and humidity. This impact decreased with an increasing level of air pollution. Significant linear correlations were found between acceptability and enthalpy of the air at all pollution levels tested, and a linear model was established to describe the dependence of perceived air quality on temperature and humidity at different pollution levels.  相似文献   

20.
Air-conditioning is frequently used as a means of adjusting indoor thermal environment in hot-and-humid areas. However, when entering an air-conditioned building from outdoors people may experience thermal discomfort and risk health consequence if the instantaneous change of air temperature exceeds the thermoregulatory capacity. A study was conducted to investigate the alteration in thermal perception and in thermoregulation that simultaneously occurred in response to temperature step in a thermal transient. In this study, two temperature down-steps from 32/28 to 24 °C and an up-step from 20 to 24 °C were created in a climatic chamber consisting of two microclimate-controlled rooms, and subjects were evaluated for change in thermal sensation as well as in skin physiological properties, including skin capillary blood flow (SCBF), skin moisture, transepidermal water loss (TEWL), and skin temperature over the course of acclimation. As the results show, a cold sensation overshot occurred in thermal sensation vote (TSV), skin temperature, and SCBF in 1 min after the temperature dropped from 32 to 24 °C. TSV correlated the best with skin temperature (r = 0.60) and moderately with skin moisture and TEWL (r = 0.42–0.54) when the temperature down-step reached 8 °C. TEWL acclimated in a two-stage pattern, demonstrating a difference between the sensational change and thermoregulation. The gender-specific influence occurred in thermoregulation but not in subjective sensation. The findings of the study suggest that thermoregulatory burden might be adequately controlled when the temperature step in thermal transition zone is limited to 4 °C or lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号