首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lethality of ultrapasteurization treatments (70 °C/1.5 min.) applied at constant temperature (isothermal condition) and at a constantly raising temperature of 2 °C/min (non-isothermal condition) in liquid whole egg (LWE) against two strains of Listeria monocytogenes (STCC 5672 and 4032) and one of Listeria innocua has been investigated. Isothermal survival curves up to 71 °C were obtained, which followed first-order inactivation kinetics. The obtained Dt values indicated that L. innocua was significantly (p < 0.05) more heat resistant than L. monocytogenes strains. Non-significant (p > 0.05) differences were observed among z values (12.4 ± 0.4 °C, 13.1 ± 0.4 °C and 12.2 ± 0.7 °C for L. innocua and L. monocytogenes 5672 and 4032, respectively). Based on obtained Dt and z values, isothermal ultrapasteurization treatment (70 °C/1.5 min.) would provide 3.5-, 5.0-, and 6.5-Log10 cycles of L. innocua and L. monocytogenes 5672 and 4032, respectively. Non-isothermal heating lag phase increased the thermotolerance of Listeria species in LWE. The simulated industrial pasteurization treatment for LWE (heating-up phase from 25 to 70 °C followed by 1.5 min. at 70 °C) would attain 5-Log10 reductions of L. monocytogenes 5672 and 4032, and 3.7-Log10 reductions of L. innocua. Therefore, the safety level of industrial ultrapasteurization concerning L. monocytogenes could be lower than that estimated with data obtained under isothermal conditions.  相似文献   

2.
This investigation aimed to determine the role of general stress-response alternative sigma factors σS (RpoS) and σB (SigB) in heat resistance and the occurrence of sublethal injuries in cell envelopes of stationary-phase Escherichia coli BJ4 and Listeria monocytogenes EGD-e cells, respectively, as a function of treatment medium pH. Given that microbial death followed first-order inactivation kinetics (R2 > 0.95) the traditional DT and z values were used to describe the heat inactivation kinetics.Influence of rpoS deletion was constant at every treatment temperature and pH, making a ΔrpoS deletion mutant strain approximately 5.5 times more heat sensitive than its parental strain for every studied condition. Furthermore, the influence of the pH of the treatment medium on the reduction of the heat resistance of E. coli was also constant and independent of the treatment temperature (average z value = 4.9 °C) in both parental and mutant strains.L. monocytogenes EGD-e z values obtained at pH 7.0 and 5.5 were not significantly different (p > 0.05) in either parental or the ?sigB deletion mutant strains (average z value = 4.8 °C). Nevertheless, at pH 4.0 the z value was higher (z = 8.4 °C), indicating that heat resistance of both L. monocytogenes strains was less dependent on temperature at pH 4.0. At both pH 5.5 and 7.0 the influence of sigB deletion was constant and independent of the treatment temperature, decreasing L. monocytogenes heat resistance approximately 2.5 times. In contrast, the absence of sigB did not decrease the heat resistance of L. monocytogenes at pH 4.0.The role of RpoS in protecting cell envelopes was more important in E. coli (4 times) than SigB in L. monocytogenes (1.5 times). Moreover, the role of σS in increasing heat resistance seems more relevant in enhancing the intrinsic resilience of the cytoplasmic membrane, and to a lesser extent, outer membrane resilience.Knowledge of environmental conditions related to the activation of alternative sigma factors σS and σB and their effects on heat resistance would help us to avoid and/or identify situations that increase bacterial stress resistance. Therefore, more efficient food preservation processes might be designed.  相似文献   

3.
The objectives of this study were to examine and model the probability of growth of Listeria monocytogenes in cooked salmon containing salt and smoke (phenol) compound and stored at various temperatures. A growth probability model was developed, and the model was compared to a model developed from tryptic soy broth (TSB) to assess the possibility of using TSB as a substitute for salmon. A 6-strain mixture of L. monocytogenes was inoculated into minced cooked salmon and TSB containing 0–10% NaCl and 0–34 ppm phenol to levels of 102–3 cfu/g, and the samples were vacuum-packed and stored at 0-–25 °C for up to 42 days. A total 32 treatments, each with 16 samples, selected by central composite designs were tested. A logistic regression was used to model the probability of growth of L. monocytogenes as a function of concentrations of salt and phenol, and storage temperature. Resulted models showed that the probabilities of growth of L. monocytogenes in both salmon and TSB decreased when the salt and/or phenol concentrations increased, and at lower storage temperatures. In general, the growth probabilities of L. monocytogenes were affected more profoundly by salt and storage temperature than by phenol. The growth probabilities of L. monocytogenes estimated by the TSB model were higher than those by the salmon model at the same salt/phenol concentrations and storage temperatures. The growth probabilities predicted by the salmon and TSB models were comparable at higher storage temperatures, indicating the potential use of TSB as a model system to substitute salmon in studying the growth behavior of L. monocytogenes may only be suitable when the temperatures of interest are in higher storage temperatures (e.g., >12 °C). The model for salmon demonstrated the effects of salt, phenol, and storage temperature and their interactions on the growth probabilities of L. monocytogenes, and may be used to determine the growth probability of L. monocytogenes in smoked seafood.  相似文献   

4.
Lauric arginate (LAE) at concentrations of 200 ppm and 800 ppm was evaluated for its effectiveness in reducing cold growth of Listeria monocytogenes in whole milk, skim milk, and Queso Fresco cheese (QFC) at 4°C for 15 to 28 d. Use of 200 ppm of LAE reduced 4 log cfu/mL of L. monocytogenes to a nondetectable level within 30 min at 4°C in tryptic soy broth. In contrast, when 4 log cfu/mL of L. monocytogenes was inoculated in whole milk or skim milk, the reduction of L. monocytogenes was approximately 1 log cfu/mL after 24 h with 200 ppm of LAE. When 800 ppm of LAE was added to whole or skim milk, the initial 4 log cfu/mL of L. monocytogenes was nondetectable following 24 h, and no growth of L. monocytogenes was observed for 15 d at 4°C. With surface treatment of 200 or 800 ppm of LAE on vacuum-packaged QFC, the reductions of L. monocytogenes within 24 h at 4°C were 1.2 and 3.0 log cfu/g, respectively. In addition, the overall growth of L. monocytogenes in QFC was decreased by 0.3 to 2.6 and by 2.3 to 5.0 log cfu/g with 200 and 800 ppm of LAE, respectively, compared with untreated controls over 28 d at 4°C. Sensory tests revealed that consumers could not determine a difference between QFC samples that were treated with 0 and 200 ppm of LAE, the FDA-approved level of LAE use in foods. In addition, no differences existed between treatments with respect to flavor, texture, and overall acceptability of the QFC. Lauric arginate shows promise for potential use in QFC because it exerts initial bactericidal activity against L. monocytogenes at 4°C without affecting sensory quality.  相似文献   

5.
Illnesses from Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella have been associated with the consumption of numerous produce items. Little is known about the effect of consumer handling practices on the fate of these pathogens on celery. The objective of this study was to determine pathogen behavior at different temperatures under different storage conditions. Commercial fresh-cut celery was inoculated at ca. 3 log CFU/g onto either freshly cut or outer uncut surfaces and stored in either sealed polyethylene bags or closed containers. Samples were enumerated following storage for 0, 1, 3, 5, and 7 days when held at 4 °C or 12 °C, and after 0, 8, and 17 h, and 1, and 2 days when held at 22 °C. At 4 °C, all populations declined by 0.5–1.0 log CFU/g over 7 days. At 12 °C, E. coli O157:H7 and Salmonella populations did not change, while L. monocytogenes populations increased by ca. 0.5 log CFU/g over 7 days. At 22 °C, E. coli O157:H7, Salmonella, and L. monocytogenes populations increased by ca. 1, 2, or 0.3 log CFU/g, respectively, with the majority of growth occurring during the first 17 h. On occasion, populations on cut surfaces were significantly higher than those on uncut surfaces. Results indicate that populations are reduced under refrigeration, but survive and may grow at elevated temperatures.  相似文献   

6.
A stochastic modelling approach was developed to describe the distribution of Listeria monocytogenes contamination in foods throughout their shelf life. This model was designed to include the main sources of variability leading to a scattering of natural contaminations observed in food portions: the variability of the initial contamination, the variability of the biological parameters such as cardinal values and growth parameters, the variability of individual cell behaviours, the variability of pH and water activity of food as well as portion size, and the variability of storage temperatures. Simulated distributions of contamination were compared to observed distributions obtained on 5 day-old and 11 day-old cheese curd surfaces artificially contaminated with between 10 and 80 stressed cells and stored at 14 °C, to a distribution observed in cold smoked salmon artificially contaminated with approximately 13 stressed cells and stored at 8 °C, and to contaminations observed in naturally contaminated batches of smoked salmon processed by 10 manufacturers and stored for 10 days a 4 °C and then for 20 days at 8 °C. The variability of simulated contaminations was close to that observed for artificially and naturally contaminated foods leading to simulated statistical distributions properly describing the observed distributions. This model seems relevant to take into consideration the natural variability of processes governing the microbial behaviour in foods and is an effective approach to assess, for instance, the probability to exceed a critical threshold during the storage of foods like the limit of 100 CFU/g in the case of L. monocytogenes.  相似文献   

7.
The behaviour of Listeria monocytogenes in a processed cheese product was evaluated over time by inoculating the product with three different L. monocytogenes strains (Scott A, CA and a strain isolated from processed cheese) at three different inoculation levels (ca. 6 × 105, ca. 6 × 103 and 102 CFU/g of cheese or less) and after storage of the contaminated products at 4, 12 or 22 °C. Growth of L. monocytogenes was not observed in any of the experimental trials (experiments involving different combinations of strain, inoculum level and storage temperature) throughout the storage period. L. monocytogenes populations decreased over time with a rate that was strain- and storage temperature-dependent. Nonetheless, for cheeses that had been inoculated with the higher inoculum and stored at 4 °C viable populations of L. monocytogenes could be detected for up to nine months post-inoculation. The L. monocytogenes survival curves obtained from the different trials were characterised by a post-inoculation phase during which the populations remained essentially unchanged (lag phase) followed by a phase of logarithmic decline. The duration of the lag phase and the rate of inactivation of L. monocytogenes in the different trials were estimated based on data from the linear descending portions of the survival curves. In addition, a non-linear Weibull-type equation was fitted to the data from each survival curve with satisfactory results. The results of the present study emphasize that, according to the definition laid down in the European Union Regulation 1441/2007, the processed cheese product tested in this work should be considered and classified as one that does not support the growth of L. monocytogenes under reasonable foreseeable conditions of distribution and storage. However, post-processing contamination of the product should be austerely avoided as the pathogen can survive in the product for extended periods of time, particularly under refrigerated storage (4 °C).  相似文献   

8.
We investigated the formation of single and mixed species biofilms of Listeria monocytogenes strains EGD-e and LR-991, with Lactobacillus plantarum WCFS1 as secondary species, and their resistance to the disinfectants benzalkonium chloride and peracetic acid. Modulation of growth, biofilm formation, and biofilm composition was achieved by addition of manganese sulfate and/or glucose to the BHI medium. Composition analyses of the mixed species biofilms using plate counts and fluorescence microscopy with dual fluorophores showed that mixed species biofilms were formed in BHI (total count, 8-9 log10 cfu/well) and that they contained 1-2 log10 cfu/well more L. monocytogenes than L. plantarum cells. Addition of manganese sulfate resulted in equal numbers of both species (total count, 8 log10 cfu/well) in the mixed species biofilm, while manganese sulfate in combination with glucose, resulted in 1-2 log10 more L. plantarum than L. monocytogenes cells (total count, 9 log10 cfu/well). Corresponding single species biofilms of L. monocytogenes and L. plantarum contained up to 9 log10 cfu/well. Subsequent disinfection treatments showed mixed species biofilms to be more resistant to treatments with the selected disinfectants. In BHI with additional manganese sulfate, both L. monocytogenes strains and L. plantarum grown in the mixed species biofilm showed less than 2 log10 cfu/well inactivation after exposure for 15 min to 100 μg/ml benzalkonium chloride, while single species biofilms of both L. monocytogenes strains showed 4.5 log10 cfu/well inactivation and single species biofilms of L. plantarum showed 3.3 log10 cfu/well inactivation. Our results indicate that L. monocytogenes and L. plantarum mixed species biofilms can be more resistant to disinfection treatments than single species biofilms.  相似文献   

9.
Listeria monocytogenes CCUG 15526 was inoculated at a concentration of approximately 7.0 log10 cfu/mL in milk samples with 0.3, 3.6, 10, and 15% fat contents. Milk samples with 0.3 and 3.6% fat content were also inoculated with a lower load of approximately 3.0 log10 cfu/mL. Inoculated milk samples were subjected to a single cycle of ultra-high-pressure homogenization (UHPH) treatment at 200, 300, and 400 MPa. Microbiological analyses were performed 2 h after the UHPH treatments and after 5, 8, and 15 d of storage at 4°C. Maximum lethality values were observed in samples treated at 400 MPa with 15 and 10% fat (7.95 and 7.46 log10 cfu/mL), respectively. However, in skimmed and 3.6% fat milk samples, complete inactivation was not achieved and, during the subsequent 15 d of storage at 4°C, L. monocytogenes was able to recover and replicate until achieving initial counts. In milk samples with 10 and 15% fat, L. monocytogenes recovered to the level of initial counts only in the milk samples treated at 200 MPa but not in the milk samples treated at 300 and 400 MPa. When the load of L. monocytogenes was approximately 3.0 log10 cfu/mL in milk samples with 0.3 and 3.6% fat, complete inactivation was not achieved and L. monocytogenes was able to recover and grow during the subsequent cold storage. Fat content increased the maximum temperature reached during UHPH treatment; this could have contributed to the lethal effect achieved, but the amount of fat of the milk had a stronger effect than the temperature on obtaining a higher death rate of L. monocytogenes.  相似文献   

10.
The effects and interactions of temperature (56.3–60 °C), sodium lactate (SL; 0–4.8%), sodium diacetate (SD; 0–0.25%) and pediocin (0–10,000 AU) on Listeria monocytogenes on bologna were studied and a predictive inactivation model was developed. Bologna was manufactured with different SL/SD concentrations in the formulation, dipped in pediocin solution and treated at different temperatures using combinations of parameters determined by central composite design. D-values were calculated and analyzed using second order response regression. Predicted D-values were also calculated. The observed D-values for L. monocytogenes on bologna ranged from 2.10 to 35.59 min. Temperature alone decreased predicted D-values from 99.02 min at 56.3 °C to 44.71 min at 60.0 °C. Adding SL decreased D-values (85.43–22.71 min) further; however, heat and SD combined was the most effective for reducing L. monocytogenes on bologna. An SD level of 0.25% at 58.2 °C had the overall lowest predicted D-value (15.95 min). Combination treatments increased or decreased D-values, depending on the temperature. Pediocin (2500 and 5000 AU) and heat decreased D-values, but exhibited a protective effect at higher concentrations (≥7500 AU). The results showed that interactions between additives in formulations can vary at different temperatures/concentrations, thereby affecting thermal inactivation of foodborne pathogens in meat products. Hence, food processors should modify food formulations carefully, and verify with adequate testing so that product safety is not compromised.  相似文献   

11.
The effects and interactions of temperature (56.3-60 °C), sodium lactate (SL; 0-4.8%), sodium diacetate (SDA; 0-2.5%), and pediocin (0-10,000 AU) on starved Listeria monocytogenes (107 CFU/g) on bologna were investigated. Bologna slices containing SL and SDA in the formulation were dipped in pediocin, surface inoculated, and treated at various temperatures using combinations of parameters determined by central composite design. D-values were calculated. The observed D-values ranged from 2.8 min at 60 °C to 24.61 min at 56.3 °C. Injury ranged from 9.1 to 76% under various conditions. The observed D-values were analyzed using second order response surface regression for temperature, SL, SDA, and pediocin, and a predictive model was developed. Predicted D-values were calculated and ranged from 3.7 to 19 min for various combinations of parameters. Temperature alone reduced the predicted D-values from 33.96 min at 56.3 °C to 11.51 min at 60 °C. Addition of SL showed a protective effect. Other combination treatments either reduced or increased D-values depending on temperature. The combination of SL and SDA was effective at lower temperatures, however, higher levels of SDA at higher temperatures made the organism more heat resistant. Pediocin (up to 5000 AU) with increasing temperature and SDA reduced D-values. Depending on temperature and concentration, the interactions between various additives can affect thermal inactivation of L. monocytogenes on bologna. Starvation rendered L. monocytogenes more susceptible to heat and additives.  相似文献   

12.
M. Muñoz  L. Guevara  J. Tabera 《LWT》2009,42(1):220-227
The antimicrobial properties of oregano, rosemary and laurel extracts obtained by supercritical fluid extraction were investigated by examining their influence on the growth and viability of Listeria monocytogenes in laboratory medium and broccoli juice at 30 and 8 °C. Important decreases in the L. monocytogenes population were shown in presence of all the extracts obtained from rosemary and one oregano extract. The counts were reduced below the level of detection after 4 h of exposure at 30 °C in laboratory medium. A bactericidal effect was observed also when L. monocytogenes was exposed to rosemary at 30 °C and 8 °C in broccoli juice. Significant reductions in growth rate and an increase in lag phase of L. monocytogenes were observed in presence of some of the laurel and oregano extracts at both temperatures.Flow cytometry was used as a rapid method to determine the antibacterial effect of supercritical extracts and the physiological state of L. monocytogenes. Bacterial viability performed by dual staining of L. monocytogenes with SYTO 9 and propidium iodide revealed three different cell populations, specifically, living, dead and compromised cells. Live cell percentage decreased with the time of exposure, whereas the percentage of compromised cells remained constant and the dead cells increased in the same period.  相似文献   

13.
14.
The effect of high-hydrostatic-pressure processing (HPP) on the survival of a 5-strain rifampicin-resistant cocktail of Listeria monocytogenes in Queso Fresco (QF) was evaluated as a postpackaging intervention. Queso Fresco was made using pasteurized, homogenized milk, and was starter-free and not pressed. In phase 1, QF slices (12.7 × 7.6 × 1 cm), weighing from 52 to 66 g, were surface inoculated with L. monocytogenes (ca. 5.0 log10 cfu/g) and individually double vacuum packaged. The slices were then warmed to either 20 or 40°C and HPP treated at 200, 400, and 600 MPa for hold times of 5, 10, 15, or 20 min. Treatment at 600 MPa was most effective in reducing L. monocytogenes to below the detection level of 0.91 log10 cfu/g at all hold times and temperatures. High-hydrostatic-pressure processing at 40°C, 400 MPa, and hold time ≥15 min was effective but resulted in wheying-off and textural changes. In phase 2, L. monocytogenes was inoculated either on the slices (ca. 5.0 log10 cfu/g; ON) or in the curds (ca. 7.0 log10 cfu/g; IN) before the cheese block was formed and sliced. The slices were treated at 20°C and 600 MPa at hold times of 3, 10, and 20 min, and then stored at 4 and 10°C for 60 d. For both treatments, L. monocytogenes became less resistant to pressure as hold time increased, with greater percentages of injured cells at 3 and 10 min than at 20 min, at which the lethality of the process increased. For the IN treatment, with hold times of 3 and 10 min, growth of L. monocytogenes increased the first week of storage, but was delayed for 1 wk, with a hold time of 20 min. Longer lag times in growth of L. monocytogenes during storage at 4°C were observed for the ON treatment at hold times of 10 and 20 min, indicating that the IN treatment may have provided a more protective environment with less injury to the cells than the ON treatment. Similarly, HPP treatment for 10 min followed by storage at 4°C was the best method for suppressing the growth of the endogenous microflora with bacterial counts remaining below the level of detection for 2 out of the 3 QF samples for up to 84 d. Lag times in growth were not observed during storage of QF at 10°C. Although HPP reduced L. monocytogenes immediately after processing, a second preservation technique is necessary to control growth of L. monocytogenes during cold storage. However, the results also showed that HPP would be effective for slowing the growth of microorganisms that can shorten the shelf life of QF.  相似文献   

15.
The aim of this work was to study the photocatalytic activity of titanium dioxide (TiO2) against Listeria monocytogenes bacterial biofilm. Different TiO2 nanostructured thin films were deposited on surfaces such as stainless steel and glass using the doctor-blade technique. All the surfaces were placed in test tubes containing Brain Heart (BH) broth and inoculated with L. monocytogenes. Test tubes were then incubated for 10 days at 16 °C in order to allow biofilm development. After biofilm formation, the surfaces were illuminated by ultraviolet A light (UVA; wavelength of 315-400 nm). The quantification of biofilms was performed using the bead vortexing method, followed by agar plating and/or by conductance measurements (via the metabolic activity of biofilm cells). The presence of the TiO2 nanoparticles resulted in a fastest log-reduction of bacterial biofilm compared to the control test. The biofilm of L. monocytogenes for the glass nanoparticle 1 (glass surface modified by 16% w/v TiO2) was found to have decreased by 3 log CFU/cm2 after 90 min irradiation by UVA. The use of TiO2 nanostructured photocatalysts as alternative means of disinfecting contaminated surfaces presents an intriguing case, which by further development may provide potent disinfecting solutions. Surface modification using nanostructured titania and UV irradiation is an innovative combination to enhance food safety and economizing time and money.  相似文献   

16.
The ability of meat borne anti-Listeria Lactobacillus to form biofilms under different in vitro conditions and on abiotic surfaces was investigated. Biofilm formation by the adhesion to polystyrene microtiter plates was determined, this being higher for Lactobacillus curvatus CRL1532 and CRL705 and Lactobacillus sakei CRL1862. The physicochemical properties of the cell surface were relatively hydrophilic and acidic in character; L. sakei CRL1862 exhibiting the strongest autoaggregation. The adhesion of lactobacilli to stainless steel (SS) and polytetrafluoroethylene (PTFE) supports at 10 °C was found to be maximal for L. sakei CRL1862 on SS after 6 days. When biofilm architecture was characterized by epifluorescence and SEM, L. sakei CRL1862 homogeneously covered the SS surface while cell clusters were observed on PTFE; the extracellular polymeric substance matrix adapted to the topography and hydrophilic/hydrophobic characteristics of each material. The feasibility of L. sakei CRL1862 to form biofilm on materials used in meat processing highlights its potential as a control strategy for Listeria monocytogenes biofilms.  相似文献   

17.
The aim of the work was to develop and validate a model of the inactivation of Listeria monocytogenes on dry-cured ham by high hydrostatic pressure (HHP) processing, as a function of the technological parameters: intensity, length and fluid temperature. Dry-cured ham inoculated with L. monocytogenes was treated at different HHP conditions (at 347-852 MPa; for 2.3 to 15.75 min; at 7.6 to 24.4 °C) following a central composite design. Bacterial inactivation was assessed in terms of logarithmic reductions of L. monocytogenes counts on selective media. According to the best fitting and most significant polynomial equation, pressure and time were the most important factors determining the inactivation extent. The significance of the quadratic term of pressure and time indicated that little effect was observed below 450 MPa, whereas holding time longer than 10 min did not result in a meaningful reduction of L. monocytogenes counts. Temperature did not show significant influence at the range assayed. The model was validated with results obtained from further experiments and bibliographical data within the range of the experimental domain. The accuracy factor and bias factor were within the proposed acceptable values indicating the suitability of the model for predictive purposes, such as prediction of the process criteria to meet the Food Safety Objectives. The results of this work may help food processors to select optimum processing conditions of HHP.  相似文献   

18.
Minimally processed refrigerated ready-to-eat fishes may offer health risk of severe infection to susceptible individuals due to contamination by the psychrotolerant bacterium L. monocytogenes. In this work, inhibition of L. monocytogenes by a plant extract and lactic acid bacteria (LAB) was studied in model fish systems kept at 5 °C for 35 days. For that, fillets of tropical fish “surubim” (Pseudoplatystoma sp.) and hydroalcoholic extract of the plant Lippia sidoides Cham. (“alecrim pimenta”) were used. Fish peptone broth (FPB), “surubim” broth and “surubim” homogenate were inoculated with combinations of L. monocytogenes and bacteriocin-producing Carnobacterium maltaromaticum (C2 and A9b+) and non bacteriocin-producing C. maltaromaticum (A9b-), in the presence or absence of extract of “alecrim pimenta” (EAP). In all model systems, monocultures of L. monocytogenes and carnobacteria reached final populations ≥ 108 CFU/ml after 35 days, except for L. monocytogenes in “surubim” homogenate (104 CFU/ml). In FPB, EAP alone and combined with cultures of LAB inhibited L. monocytogenes but carnobacteria without EAP were only weakly antilisterial. In “surubim” broth, EAP alone did not prevent L. monocytogenes growth but cultures of carnobacteria combined or not with EAP inhibited L. monocytogenes, with more pronounced effect being observed for C. maltaromaticum C2, which produced bacteriocin. In “surubim” homogenate, EAP alone and combined with cultures of C. maltaromaticum A9b and A9b+ were strongly inhibitory to L. monocytogenes, while C. maltaromaticum C2 with EAP caused transient inhibition of L. monocytogenes. No significant inhibition of L. monocytogenes was observed for carnobacteria in “surubim” homogenate without EAP. In conclusion, it was observed that the use of EAP and cultures of carnobacteria have potential to inhibit L. monocytogenes in fish systems and the applications should be carefully studied, considering the influence of food matrix.  相似文献   

19.
This study was focused on the possibility to inactivate main food pathogens, their spores and biofilms on the surface of packaging material polyolefine by Na-chlorophyllin (Na-Chl)-based photosensitization and to compare efficiency of this treatment with conventional antimicrobials.Data indicate that Bacillus cereus and Listeria monocytogenes were effectively inactivated (7 log) by Na-Chl (7.5 × 10−7 M)-based photosensitization in vitro and on the surface of packaging. Meanwhile to achieve adequate inactivation of thermo-resistant strains, spores or biofilms the higher Na-Chl concentration and longer illumination times had to be used. Comparison of different surface decontamination treatments reveal that photosensitization is much more effective against B. cereus and L. monocytogenes attached on the surface than washing with water or 200 ppm Na-hypochlorite.Our data support the idea that photosensitization may serve in the future for the development of human and environment friendly, non-thermal surface decontamination technique.  相似文献   

20.
This study determined the efficacy of actinidin and papain on reducing Listeria monocytogenes and three mixed strains of Escherichia coli O157:H7 populations on beef. The average reduction of E. coli O157:H7 was greater than that of L. monocytogenes and higher concentrations of either protease yielded greater reduction in bacterial populations. For instance, actinidin at 700 mg/ml significantly (p ≤ 0.05) reduced the population of L. monocytogenes by 1.49 log cfu/ml meat rinse after 3 h at 25 & 35 °C, and by 1.45 log cfu/ml rinse after 24 h at 5 °C, while the same actinidin concentration significantly reduced the populations of three mixed strains of E. coli O157:H7 by 1.81 log cfu/ml rinse after 3 h at 25 & 35 °C, and 1.94 log cfu/ml rinse after 24 h at 5 °C. These findings suggest that, in addition to improving the sensory attributes of beef, proteolytic enzymes can enhance meat safety when stored at suitable temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号