首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
板栗淀粉酶水解工艺条件研究   总被引:1,自引:0,他引:1  
为探索板栗淀粉酶水解特性及工艺条件,采用中温α-淀粉酶对板栗淀粉进行水解,并在水解温度、pH、底物浓度及酶用量等单因素试验的基础上进行二次回归正交旋转试验,确定板栗淀粉酶解工艺条件.结果表明:对α-淀粉酶水解板栗淀粉影响程度大小依次为pH>水解温度>酶用量>底物浓度;α-淀粉酶水解板栗淀粉的适宜工艺条件为:水解温度70.2 ℃,pH 5.83,底物浓度73.10 g/L,酶用量122.45 U/g,水解时间为75 min.在此工艺条件下板栗淀粉酶水解度为27.476% .  相似文献   

2.
木薯渣经α-淀粉酶、糖化酶和纤维素酶单独酶水解时,其最佳酶用量分别为:2500U/g淀粉、2000U/g淀粉和120U/g纤维素。当木薯渣用α-淀粉酶与糖化酶用量一定时,底物浓度(5%、10%、15%)的增加,最佳酶水解时间(葡萄糖浓度最高时所需要的水解时间)会延长,且糖化酶所需的最佳酶水解时间明显长于淀粉酶。当纤维素酶在酶用量为120U/g纤维素,底物浓度为5%时,来自木薯渣中纤维素全部转化为葡萄糖。α-淀粉酶与糖化酶对木薯渣酶解具有协同作用,可提高最终糖浓度。当α-淀粉酶的酶用量为2500U/g淀粉,糖化酶的用量为3000U/g淀粉时,木薯渣浓度为5%和15%时,酶水解产生的最终葡萄糖浓度为28.98g/L和62.04g/L,其水解效率(相对于原料中淀粉)分别为100%和78.7%。  相似文献   

3.
利用耐高温α-淀粉酶能将底物同步糊化和液化的特性,通过单因素和正交试验对耐高温α-淀粉酶水解荞麦淀粉的动力学参数和最适反应条件进行了测定.结果表明:耐高温α-淀粉酶的最适温度为80~85℃,最适pH为5.0~6.5;该酶水解荞麦淀粉的Km为4.9674mg/mL,Vm为0.3448mg/(mL·min);该酶水解荞麦淀粉的优化工艺条件为荞麦淀粉浆浓度25%,温度为83℃,pH6.5,酶用量40U/g,液化时间15min.荞麦淀粉液化液糖化后的DE值为89.87%.  相似文献   

4.
木薯淀粉酶解工艺的优化   总被引:8,自引:3,他引:5       下载免费PDF全文
研究了中温α-淀粉酶水解木薯淀粉的工艺条件,以水解产生的还原糖含量作为指标,通过单因素试验和二次正交回归旋转组合试验优化,用DPS软件分析处理数据,建立了模型,最终确定了中温α-淀粉酶水解木薯淀粉的最佳工艺条件是酶用量162U/g淀粉,水解温度为63℃、底物浓度6g/100mL、水解时间150min,葡萄糖糖得率是46.94%,验证试验结果与模型基本相符。  相似文献   

5.
混合酶水解水溶性淀粉的研究   总被引:2,自引:2,他引:2  
根据α-淀粉酶和糖化酶的性质设计了混合酶水解淀粉的试验,确定了糖化最佳条件为pH5.6,温度58℃,混合酶作用底物的最佳酶活比为α-淀粉酶:糖化酶=1:4,适宜的给酶量为1218 U/g~1827U/g(干淀粉)。  相似文献   

6.
板粟深加工中淀粉的酶水解研究   总被引:7,自引:0,他引:7  
谢主兰  吴雪辉 《食品科学》2003,24(10):62-66
试验对比了BAA中温α-淀粉酶和耐高温α-(Termamyl 120L,S型)对板栗浆液中淀粉的液化效果,选择使用耐高温α-淀粉酶(Termamyl 1120L,S型)为液化板栗淀粉的作用酶,单因素研究确定了液化工艺参数为:料水比1:5,液化温度90℃,pH6.0,酶用量7U/g果肉,液化时间60min。然后采用Novozym^TMAG糖化酶对液化后的板粟淀粉进行糖化,以淀粉水解度(DE值)和糖化液中还原糖的含量(g/100m1)为指标,正交试验表明,在糖化温度60℃,pH4.5,Novozym^TMAG使用量为80U/g果肉的条件下糖化90min,可使水解度(DE值)和糖化液中还原糖含量(g/100m1)分别达到48.9%和4.52g/100ml。  相似文献   

7.
玉米抗性淀粉酶解法制备工艺的研究   总被引:3,自引:0,他引:3  
以抗性淀粉得率为评价指标,采用酶解法制备玉米抗性淀粉,通过正交试验确定了酶解法制备的最佳工艺条件:α-淀粉酶酶解条件为淀粉乳浓度20%,α-淀粉酶用量15u/g,酶解温度70℃;普鲁兰酶脱支条件为普鲁兰酶用量4u/g,脱支时间10h,pH值4.5;糊化条件为糊化时间20min,糊化温度120℃。  相似文献   

8.
荞麦淀粉双酶水解工艺条件的优化研究   总被引:1,自引:1,他引:1  
为掌握中温α-淀粉酶和糖化酶双酶水解荞麦淀粉的工艺条件,本试验在系统分析影响荞麦淀粉水解度的单因素试验的基础上,采用二次回归正交组合试验设计对荞麦淀粉双酶水解工艺条件进行优化.结果表明,影响荞麦淀粉水解度的因素为糖化酶用量、糖化温度、糊化前α-淀粉酶用量、糊化后a-淀粉酶用量,糊化后a-淀粉酶用量与糖化温度、糖化酶用量与糖化温度间存在显著交互作用.在糊化前α-淀粉酶用量为61.87~66.26 U.g-1、糊化后a-淀粉酶用量20.89~24.64 U.g-1、糖化酶用量为30.98~37.14 U.g-1、糖化温度60.85~62.28℃的双酶水解工艺务件下,荞麦淀粉的水解度超过90%.  相似文献   

9.
以赤豆为原料,使用赤豆蛋白、纤维的简单分离技术,采用L(934)正交实验设计和二次旋转正交试验方法对影响赤豆中淀粉、蛋白质、纤维素水解的酶用量、底物浓度、水解温度、时间和pH等5项因素进行了试验。试验结果表明赤豆水解的最佳工艺条件为:淀粉酶加酶量0.5%(g酶/g赤豆)、水解温度100℃、水解时间3h、pH6.0、底物浓度1∶10(赤豆∶水);蛋白酶加酶量0.1%(g酶/g蛋白质)、水解温度55℃、水解时间3h、pH5.5、底物浓度1∶8;复合纤维素酶加酶量0.46%(g酶/g纤维素)、水解温度46℃、水解时间17h、pH4.8、底物浓度1∶11。并以赤豆酶解产物为壁材,通过制备微胶囊技术制得全赤豆速溶饮品。  相似文献   

10.
双酶协同酶解木薯淀粉的研究   总被引:4,自引:1,他引:3  
本文研究了α-淀粉酶(酶活:4,000 U/g,最适pH 5.5~6.5,最适温度50~55℃)和糖化酶(酶活:100,000 U/g,最适pH 4.0~4.5,最适温度58~62℃)协同水解制备木薯微孔淀粉的工艺条件.结果表明木薯淀粉的水解率为50%时质量最好,此时的工艺条件为:加酶量(α-淀粉酶与糖化酶的质量比为3:1)为干基淀粉质量的0.50%,反应时间12 h,反应温度55℃,反应pH 5.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号