首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
将部分磨矿产品筛分为窄粒级物料,采用"分级磁选—分级浮选"和"全粒级磁选—浮选"分选流程,对攀枝花密地选钛厂原矿进行选矿试验,分别经过三段强磁预富集—一段浮选得到粗精矿。结果表明,全粒级磁选—浮选最终精矿TiO_2品位为32.17%,TiO_2回收率为41.03%;分级磁选—分级浮选最终精矿TiO_2品位为33.60%,TiO_2回收率为45.64%,分级分选指标明显优于全粒级分选。分级磁选更有利于细粒级钛铁矿的回收,但造成粗粒级损失,但细粒级含量高,因此分级磁选更有利于提高选别指标;分级浮选有利于提高各粒级矿物的浮选指标,尤其是较粗粒级矿物,效果更明显,分析其机理很可能是分级浮选减少了粗细颗粒间的相互影响。  相似文献   

2.
攀枝花某钒钛磁铁矿选厂采用两段强磁选—浮选工艺回收钛铁矿,在将高频振动筛筛孔宽由0.18 mm优化至0.40 mm后,浮选精矿TiO_2品位由46.15%提升至46.55%,浮选尾矿TiO_2品位由4.32%提高至4.87%,精矿TiO_2回收率下降了 2个百分点。为解决金属流失问题,对浮选尾矿进行了钛回收试验。结果表明,浮选尾矿采用1次螺旋溜槽重选(分矿阀距内缘距离为30 mm)—擦磨—1次强磁选(238.85 kA/m)流程处理,获得了作业产率8.27%、TiO_2品位和作业回收率分别为17.16%和29.13%的强磁选精矿,精矿品位达到现场一段强磁选精矿品位,现场工艺优化的经济效益和社会效益显著。  相似文献   

3.
攀西某钒钛磁铁矿选厂选钛尾矿TiO_2品位6.46%,含铁12.34%,60.77%的钛以钛铁矿的形式存在,较难选的粗粒级和超细粒级含量较高。为回收利用该二次资源中钛,进行钛的再回收试验。结果表明,矿样经一段弱磁除铁—一段强磁选—+0.154 mm粒级磨矿至-0.074 mm64.41%—二段弱磁选除铁—除铁尾矿与超声波脱药后的-0.154 mm粒级合并—二段强磁选—强磁尾矿1次浮硫—浮硫尾矿1粗3精1扫选钛,可获得产率5.02%、TiO_2品位47.06%、TiO_2回收率36.74%的钛精矿,硫含量低于0.2%,同时可综合回收铁和硫。试验结果可为建设选钛尾矿再回收工艺生产线提供技术依据。  相似文献   

4.
安登极 《矿冶工程》2020,40(1):69-72
针对选钛厂浮选给矿细泥含量高的问题,对浮选给矿进行了预富集脱泥除杂试验研究。对比了立环高梯度磁选、ZH平环强磁选和离心重选等工艺的预富集效果,结果表明,ZH平环强磁选的预富集效果较好,经ZH强磁选预富集-浮选选钛,最终可以获得钛精矿品位48.18%、回收率72.43%,实现了该物料的回收利用。  相似文献   

5.
攀枝花某钛铁矿选矿厂尾矿库中尾矿TiO2和TFe品位分别为10.28%和10.38%,采用弱磁选铁-强磁预富集钛-浮选工艺回收其中的铁和钛。弱磁选铁可获得铁品位57.5%、回收率22.19%的铁精矿; 弱磁选铁尾矿经强磁预富集得到TiO2品位15.63%、回收率79.69%的强磁钛粗精矿; 强磁钛粗精矿经一次粗选一次扫选四次精选浮选闭路试验可获得TiO2品位45.97%、对强磁钛粗精矿回收率76.32%、对尾矿库尾矿回收率60.82%的钛精矿。该工艺实现了钛铁矿尾矿二次资源的综合利用。  相似文献   

6.
从钛浮选尾矿中回收钛铁矿的试验研究   总被引:2,自引:2,他引:2  
余德文 《矿业快报》2003,29(1):40-42
对攀钢选钛厂细粒级钛铁矿浮选尾矿采用强磁-磨矿-浮选工艺,得到的钛精矿品位46.34%,产率3.12%,并建议采用“浮钛尾矿强磁选 富集,磨矿后返回原强磁-浮选流程”工艺回收尾矿中钛铁矿。  相似文献   

7.
本文针对某铬铁矿,采用磁选和浮选联合工艺来回收铬铁矿,以提高Cr2O3精矿产量.由于矿样中含有磁铁矿,先利用弱磁选将矿样中的强磁性矿物脱除,回收磁铁矿;再对弱磁选尾矿进行湿式强磁场磁选实验,获得铬精矿Cr2O3品位42.37%,回收率81.34%.为了提高铬精矿的综合回收指标,对强磁场磁选尾矿进行再磨再选实验,采用一粗两精一扫闭路浮选流程,获得铬精矿Cr2O3品位35.86%,回收率70.12%.  相似文献   

8.
内蒙古某铁矿选铁尾矿TiO_2含量2.65%,TFe含量10.18%,钛主要赋存于钛铁矿和钛磁铁矿中,钛在细粒级有明显的富集现象,-0.5 mm粒级TiO_2品位为3.09%。为确定钛回收流程进行了选矿试验。试验结果表明,试样采用隔粗(+0.5 mm)筛分—筛下螺旋溜槽预抛尾—预抛尾精矿磨矿—弱磁选选铁—弱磁选尾矿螺旋溜槽2次粗选—2次粗选精矿再磨矿—摇床1粗1精1精扫重选流程处理,最终获得产率0.95%、TFe品位54.32%、TFe回收率5.07%的铁精矿,产率1.92%、TiO_2品位39.52%、TiO_2回收率28.63%的摇床精选钛精矿,以及产率0.20%、TiO_2品位31.83%、TiO_2回收率2.40%的摇床精扫选钛精矿,钛精矿总产率2.12%、TiO_2品位38.79%、TiO_2回收率31.03%。  相似文献   

9.
河北某超贫磁铁矿中钛品位极低,为对其进行综合利用,本试验确定了“阶段磨矿、强磁—浮选”技术路线,即首先在较粗磨矿细度下进行钛铁矿的强磁选预富集,强磁粗精矿再磨后使用新型捕收剂BK426进行钛铁矿无抑制剂浮选.采用该技术,可以从TiO2品位为4.03%的超贫磁铁矿中得到TiO2品位45.48%、回收率为41.01%的钛铁矿精矿,较好地实现了超贫磁铁矿资源中钛资源的综合回收.  相似文献   

10.
攀钢集团矿业公司采用“强磁+浮选”工艺解决了钛回收技术难题,但是对于-38 μm粒级的钛铁矿回收率极低。为有效利用钛矿资源,进一步提高钛铁矿的回收率,探索了新型ZQS高梯度磁选机对超细粒级(-38 μm)钛铁矿的回收效果,并对磁选精矿进行浮钛条件试验和全流程试验。结果表明:当新型ZQS高梯度磁选机在给矿TiO2品位11.47%,-38 μm含量为88.89%时,经1次磁选得到的钛精矿TiO2品位可达到20.19%,TiO2回收率83.56%,其中-38 μm的粒级回收率达到84.05%;磁选精矿脱硫后再进行1粗4精钛浮选试验,最终得到TiO2品位46.80%,浮选作业回收率61.53%,对原矿回收率51.41%的钛精矿。新型ZQS高梯度磁选机回收细粒级钛铁矿非常有效,特别是对-38 μm超细粒级钛铁矿,磁选钛精矿TiO2品位和回收率均较高,为后续浮选提供了良好的给矿条件。  相似文献   

11.
对某矿尾矿主要成分进行了分析,采用磁选-浮选流程开展选钛试验研究,主要进行了磁选条件试验、脱硫试验、浮选条件试验,取得了较好的试验结果,为该铁尾矿钛资源回收利用奠定了基础.  相似文献   

12.
攀钢集团矿业公司采用“强磁+浮选”工艺解决了钛回收技术难题,但是对于-38 μm粒级的钛铁矿回收率极低。为有效利用钛矿资源,进一步提高钛铁矿的回收率,探索了新型ZQS高梯度磁选机对超细粒级(-38 μm)钛铁矿的回收效果,并对磁选精矿进行浮钛条件试验和全流程试验。结果表明:当新型ZQS高梯度磁选机在给矿TiO2品位11.47%,-38 μm含量为88.89%时,经1次磁选得到的钛精矿TiO2品位可达到20.19%,TiO2回收率83.56%,其中-38 μm的粒级回收率达到84.05%;磁选精矿脱硫后再进行1粗4精钛浮选试验,最终得到TiO2品位46.80%,浮选作业回收率61.53%,对原矿回收率51.41%的钛精矿。新型ZQS高梯度磁选机回收细粒级钛铁矿非常有效,特别是对-38 μm超细粒级钛铁矿,磁选钛精矿TiO2品位和回收率均较高,为后续浮选提供了良好的给矿条件。  相似文献   

13.
国外某钒钛磁铁矿中主要有价元素TFe、TiO_2、V_2O_5含量分别达47.20%、18.68%、0.63%。根据钒钛磁铁矿矿物的选矿特性,采用弱磁选选铁-选铁尾矿重选选钛-重选尾矿再用"SLON强磁-浮选"回收细粒钛铁矿的综合回收工艺,获得铁精矿TFe品位60.03%、回收率70.03%;V_2O_5品位1.08%、回收率94.39%;重选钛精矿TiO_2品位48.17%、回收率27.64%;浮选钛精矿TiO_2品位46.64%、回收率16.12%。试验成果为评价该矿产资源综合利用的可行性提供了选矿技术支撑。  相似文献   

14.
唐平宇  王素  田江涛 《中国矿业》2012,21(10):91-94
针对承德某低品位铁钛磷矿石进行了综合回收试验研究,采用弱磁选铁、浮选选磷、强磁-浮选回收钛铁矿的联合工艺流程.在选铁同时,综合回收磷、钛伴生元素,分别获得合格的铁磷钛精矿产品,取得了理想的技术指标,提高了资源利用率和综合经济效益,为承德地区同类型矿床的开发利用提供了技术依据.  相似文献   

15.
借鉴以往试验成果,结合矿石性质,采用分级-一段磁选-螺旋溜槽重选-二段磁选-浮选新工艺对攀枝花白马选铁尾矿进行回收钛的选矿试验。经系统的条件试验,确定了各环节合适的工艺参数,最终获得了TiO2品位为46.23%、TiO2回收率为29.66%的钛精矿,同时可使原铁尾矿中残留的铁和硫得到综合回收。试验成果可作为白马铁矿建设钛选厂的技术依据。  相似文献   

16.
本文对某选厂铁尾矿进行了回收试验研究。试验目的为提铁降硅,回收利用废弃铁矿石资源。针对尾矿产品嵌布粒度细、连生体含量高,主要以赤褐铁矿和少量磁铁矿为主的特点,采用细磨-磁选-反浮选工艺进行了回收试验。将矿石磨矿至-0.038mm含量占90%,采用弱磁选富集磁铁矿,采用强磁选富集赤褐铁矿,将弱磁选与强磁选粗精矿合并进行反浮选试验,采用一次粗选,一次精选,最终可获得TFe品位58.03%,TFe回收率53.27%,SiO2含量4.82%的铁精矿,试验达到了预期目标。  相似文献   

17.
陕西某钒钛磁铁矿选铁尾矿TiO_2含量6.63%,TiO2分布率占原矿的76.97%。为提高该矿产资源的综合利用价值,对选铁尾矿进行了钛回收试验,根据尾矿原料及入浮物料的性质特点,开展了磁选、浮选相关条件试验,制定了适宜的选钛工艺方案。试验结果表明,采用强磁预选—浮选联合工艺,将选铁尾矿预选获得的强磁精矿作为浮选物料,经1粗1扫5精作业,可获得TiO_2品位45.34%、浮选作业回收率77.23%(对原矿回收率38.31%)的钛精矿,选钛技术指标较好,为该矿产资源的开发利用提供了技术参考依据。  相似文献   

18.
<正> 加拿大拉布拉多地区的镜铁赤铁矿石以重选法为主加以富集,必要时辅以磁选和静电选。浮选法因药剂费用高和环境污染等问题,基本上未予采用。但在碎磨过程中,不可避免会产生一些细泥,用重选法回收-75微米粒级中的铁矿物,一般效果不佳。为回收该地区重选尾矿中的细粒赤铁矿,加拿大皇后大学采矿工程系对芒特赖特重选厂的尾矿样作了多年试验。尾矿样含铁约16%,试验重点是正  相似文献   

19.
在实验室条件下,对南非某钛铁矿进行初步选矿试验研究,用以初步确定该类型钛铁矿可选性及选矿工艺方法。该类型原矿TFe品位20.46%,TiO_(2)品位10.08%,通过200 mT干式磁选进行分选,获得干式磁选尾矿。随后对该尾矿采用螺旋溜槽-摇床重选-湿式弱磁选工艺进行分选,最终获得TiO_(2)品位为46.4%的钛精矿。为进一步提高钛精矿品位,在实验室条件下采用浮选工艺进行分选试验,在磨矿细度为-0.074 mm含量占比为78%及粗选捕收剂用量400 g·t^(-1)和起泡剂用量100 g·t^(-1)条件下,经过一粗、一精、二扫浮选流程进行选别,最终可获得含TiO_(2)为49.1%的合格钛精矿。通过上述试验研究,该钛铁矿可采用磁-重-浮联合工艺流程,以获取合格品位要求的精矿。  相似文献   

20.
甘肃某低品位钛铁矿石铁和TiO_2品位分别为22.08%、18.34%,铁主要赋存于钛铁矿、钛磁铁矿和赤(褐)铁矿中。为回收矿石中的铁和钛,进行选矿试验。结果表明,在磨矿细度-0.074 mm占85%的条件下,1粗1精弱磁选—中磁选—强磁扫选—磁选精矿1粗1精反浮选试验可获得铁品位42.82%、回收率82.34%,TiO_2品位29.94%、回收率67.93%的精矿,Si O2含量仅8.97%,指标较好,精矿可作为高炉护炉原料。试验结果可为该钛铁矿石选矿工艺流程的确定提供技术参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号