首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
Nanostructuring is known to be an effective method to improve thermoelectric performance but, generally, it requires complex procedures and much labor. In the present study, self-assembled nanometer-sized composite structures of silicon (Si) and chromium disilicide (CrSi2) were easily fabricated by the rapid solidification of a melt with a eutectic composition. Ribbon-like samples were obtained with a dominant nanostructure of fine aligned lamellae with a spacing range of 20–35 nm. The thermoelectric power factor of the ribbon was observed to be 1.2 mW/mK2 at room temperature and reached 3.0 mW/mK2 at 773 K. The thermal conductivity was 65% lower than that of a bulk eutectic sample. The results suggest that this method is promising for fabricating an effective nanostructure for thermoelectric performance.  相似文献   

2.
该文研究了和/差波束干涉SAR/GMTI技术在通道不平衡条件下地杂波对消问题.文中阐述了和/差波束干涉SAR/GMTI的原理,推导了理想条件下地杂波空域对消因子.实际系统中,由于存在通道幅相不一致等误差,直接空域对消并不能有效抑制地杂波.该文研究了基于信号子空间处理的和/差波束干涉SAR/GMTI方案,通过二维信号子空间处理自适应地校正通道误差,进而对地杂波进行空域对消.仿真实验表明该方案对系统误差的敏感度显著下降,具有很好的鲁棒性,更适合于工程实施.  相似文献   

3.
A new technology of chemical surface deposition is developed, and thin CdS films (35–100 nm) on the p-CdTe substrates are obtained. Electrical and photoelectric properties of n-CdS/p-CdTe heterojunctions are studied, and it is shown that the developed method provides high efficiency of photoconversion in the range restricted by the CdTe and CdS band gaps. It is shown that the method of chemical surface deposition of CdS can be used in the design of thin-film n-CdS/p-CdTe.  相似文献   

4.
In this study we show a preparation method for nanostructured Bi0.85Sb0.15 powders via a chemical reduction route in a polyol medium, yielding material with particle sizes of 20–150 nm in scalable amounts. The powders were consolidated by spark plasma sintering (SPS) in order to maintain the nanostructure. To investigate influence of the sinter process, the powders were characterized by x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and scanning electron microscopy (SEM) measurements before and after SPS. Transport properties, Seebeck effect, and thermal conductivity were determined in the low temperature range below 300 K. The samples showed excellent thermal conductivity of 2.3–2.6 W/m × K at 300 K and Seebeck coefficients from ?97 μV/K to ?107 μV/K at 300 K with a maximum of ?141 μV/K at 110 K, thus leading to ZT values of up to 0.31 at room temperature. The results show that Bi-Sb-alloys are promising materials for low-temperature applications. Our wet chemical approach gives access to scalable amounts of nano-material with increased homogeneity and good thermoelectric properties after SPS.  相似文献   

5.
A new strategy to achieve large‐scale, three‐dimensional (3D) micro‐ and nanostructured surface patterns through selective electrochemical growth on monolayer colloidal crystal (MCC) templates is reported. This method can effectively create large‐area (>1 cm2), 3D surface patterns with well‐defined structures in a cost‐effective and time‐saving manner (<30 min). A variety of 3D surface patterns, including semishells, Janus particles, microcups, and mushroom‐like clusters, is generated. Most importantly, our method can be used to prepare surface patterns with prescribed compositions, such as metals, metal oxides, organic materials, or composites (e.g., metal/metal oxide, metal/polymer). The 3D surface patterns produced by our method can be valuable in a wide range of applications, such as biosensing, data storage, and plasmonics. In a proof‐of‐concept study, we investigated, both experimentally and theoretically, the surface‐enhanced Raman scattering (SERS) performance of the fabricated silver 3D semishell arrays.  相似文献   

6.
Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a δ‐CsPbI3 intermediate phase growth (CsPbI3‐IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI3)1–x(MAPbBr3)x perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the δ‐CsPbI3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase‐assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.  相似文献   

7.
An ultra-low-power two-step merge and split (MS) switching method for a dual-capacitive arrays (DCAs) successive approximation register analogue-to-digital converter is presented. This method only requires two reference levels, i.e. Gnd and Vcm (Vcm = 1/2Vref). Compared with the conventional method, the proposed method achieves 99.89 and 80.96% reduction in average switching energy and capacitors, respectively, meanwhile maintaining good linearity. In addition, it barely consumes reset energy and keeps common-mode voltage of DCAs almost constant.  相似文献   

8.
Two 10-mm-long multilayer prototype actuators were fabricated by a stack method using 55 pieces of 5 mm×5 mm×0.15 mm Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMNT) single crystals and PZT-5A ceramics, respectively. The strain values for PMNT multilayer piezoelectric actuators are twice those of PZT-5A multilayer actuators, and 20.8-μm displacements can be achieved at the same E-field of 15 kV/cm. Although thermal and electrical history markedly impact dielectric and piezoelectric performance of PMNT crystals, the PMNT multilayer actuator can still achieve large displacements with approximately linear behavior below 60°C. Broad stable dynamic displacement characteristic and fast displacement response make the new-type actuators promising candidates for the application in new-generation high-performance solid-state actuators.  相似文献   

9.
We propose pulse‐mode dynamic Ron measurement as a method for analyzing the effect of stress on large‐scale high‐power AlGaN/GaN HFETs. The measurements were carried out under the soft‐switching condition (zero‐voltage switching) and aimed to minimize the self‐heating problem that exists with the conventional hard‐switching measurement. The dynamic Ron of the fabricated AlGaN/GaN MIS‐HFETs was measured under different stabilization time conditions. To do so, the drain‐gate bias is set to zero after applying the off‐state stress. As the stabilization time increased from 0.1 μs to 100 ms, the dynamic Ron decreased from 160 Ω to 2 Ω. This method will be useful in developing high‐performance GaN power FETs suitable for use in high‐efficiency converter/inverter topology design.  相似文献   

10.
Mutual information separation (MISEP) is a versatile independent component analysis (ICA) algorithm that can be used to handle linear and nonlinear mixtures. By incorporating the a priori information of mixtures, an extended MISEP method is proposed in this brief to recover the source signals from the post–nonlinear–linear (PNL-L) mixtures. One group of multilayer perceptrons and two linear networks are used as the unmixing system, and another group of multilayer perceptrons is used as the auxiliary network. The learning algorithm of the system parameters is obtained by maximizing the output entropy with the gradient ascent method. Experimental results demonstrate that the proposed method is effective and efficient for PNL-L mixture separation.   相似文献   

11.
We show a sequence of interpolation formulas for the Backus-Gilbert (BG), published in 1967, method with δ-function kernels and penalty functions J(t, t')=(t-t')2k for integers X>0. We show that the interpolation in the limit sense of X→∞ is the Haar representation The interpolation formulas are generalizations of the one obtained by Caccin et al.(see ibid., vol.40, no.11, p.2823, 1992). We investigate the possibility of the BG method with δ-function kernels so that it is exactly the same as the Shannon sampling formula. We also examined the possibility of the exact reconstruction by the BG method for bandlimited signals  相似文献   

12.
A Seebeck microprobe (SMP) measurement system has been developed and employed to determine the spatial distribution of the Seebeck coefficient of a polycrystalline Zn13Sb10 specimen prepared by a gradient freeze (GF) method. The spatial distribution of the Seebeck coefficient strongly reflects that of the grains observed using an optical polarizing microscope, the magnitude of which ranges from 100 μV/K to 130 μV/K. This fact strongly indicates that the observed spatial distribution of the Seebeck coefficient arises from the anisotropic Seebeck effect of grains with different crystal orientations in the polycrystalline Zn13Sb10.  相似文献   

13.
A facile method to fabricate three‐dimensional branched ZnO/MgO nanowire heterostructures and their application as the efficient light‐extraction layer in light‐emitting diodes are reported. The branched MgO nanowires are produced on the hydrothermally‐grown ZnO nanowires with a small tapering angle towards the tip (≈6°), by the oblique angle flux incidence of MgO. The structural evolution during the growth verifies the formation of the MgO nanoscale islands with strong (111) preferred orientation on very thin (5–7 nm) MgO (110) layer. The MgO nanobranches, then grown on the islands, are polycrystalline consisting of many grains oriented in specific directions of <200> and <220>, supported by the nucleation theory. The LEDs with the branched ZnO/MgO nanowire arrays show a remarkable enhancement in the light output power by 21% compared with that of LEDs with pristine ZnO nanowires. Theoretical calculations using a finite‐difference time‐domain method reveal that the nanostructure is very effective in breaking the wave‐guiding mode inside the ZnO nanowires, extracting more light especially in radial direction through the MgO nanobranches.  相似文献   

14.
We present a new approach for the performance analysis of hybrid fiber/wireless communication systems. This approach is based on a co‐simulation using two types of dedicated software: the first is used for RF/wireless systems whereas the second is devoted to optical communication systems. The proposed method enables simultaneous simulation of all elements of the radio‐over‐fiber link with accurate modeling. A low‐cost wireless local area network over a fiber distribution system is implemented in order to validate the results experimentally. Simulation results are in good agreement with experimental measurements in terms of EVM evolution for different link element configurations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Using the method of linear response, vibrational spectra and densities of states of GaP and AlP crystals and monolayer GaP/AlP superlattices are calculated. Phonon modes of (GaP) n (AlP) m superlattices with various numbers of monolayers are calculated for the center of the Brillouin zone. The obtained results are compared with the Raman scattering data and the effect of nonideality of the interface on phonon frequencies is discussed.  相似文献   

16.
Electrophysical studies of Me/HfO2/Si(100) structures formed by the electron-beam evaporation method are carried out. The layers of a subgate dielectric are characterized by low values of the state density at the interfaces with silicon (∼1011 cm−2) as compared with values given for films formed by vapor deposition. It is shown that the structures are characterized by small leakage currents and high breakdown voltages.  相似文献   

17.
Ultrathin β‐MnOOH nanofibers can be produced on a large scale via a green‐chemical method using an aqueous solution of very dilute Mn(NO3)2 and aminoethanol at room temperature. High‐magnification electron microscopy demonstrates that the β‐MnOOH nanofibers are 3–5 nm thin and up to 1 micrometer long and the nanofibers are parallel assembled into bundles with an average diameter of 25 nm. By a filtration process, ultrathin mesoporous membranes with strong mechanical, thermal, and chemical stabilities are prepared from the β‐MnOOH nanofiber bundles. The membranes can separate 10‐nm nanoparticles from water at a flux of 15120 L m?2·h?1·bar?1, which was 2–3 times higher than that of commercial membranes with similar rejection properties. Based on the Young‐Laplace equation, β‐MnOOH nanofiber/polydimethylsiloxane composite membranes are developed through a novel downstream‐side evaporation process. From nanoporous to dense separation membranes can be achieved by optimizing the experimental conditions. The membranes show desirable separation performance for proteins, ethanol/water mixtures, and gases. The synthesis method of β‐MnOOH nanofibers is simple and environmentally friendly, and it is easily scalable for industry and applicable to other metal oxide systems. These composite membranes constitute a significant contribution to advanced separation technology.  相似文献   

18.
With high bandwidth, low interference, and low power consumption, optical network‐on‐chip (ONoC) has emerged as a highly efficient interconnection for the future generation of multicore system on chips. In this paper, we propose a new path‐setup method for ONoC to mitigate contentions, such as packets, by recycling the setup packet halfway to the destination. A new, strictly non‐blocking optical router is designed to support the new method. The simulation results show the new path‐setup method increases the throughput by 52.03%, 41.94%, and 36.47% under uniform, hotspot‐I, and hotspot‐II traffic patterns, respectively. The end‐to‐end delay performance is also improved.  相似文献   

19.
Highly sensitive CO gas sensors based on heterocontacts of ZnO:Al on La0.8Sr0.2Co0.5Ni0.5O3 (LSCNO) were fabricated successfully. La0.8Sr0.2Co0.5Ni0.5O3 thin films were coated on (100) silicon wafers by a sol-gel method including the Pechini process followed by a spin-coating procedure. Then, ZnO:Al films prepared by radiofrequency (RF) magnetron sputtering at various oxygen partial pressures and deposited on as-deposited La0.8Sr0.2Co0.5Ni0.5O3 films were investigated. The results revealed that the CO sensing ability of the film prepared with the ratio of O2/Ar = 5/5 (ratio of volume flow rate) was the worst, owing to the highest (002) plane orientation in the ZnO:Al film. In contrast, the ZnO:Al film prepared with O2/Ar = 3/7 exhibited better CO sensitivity. Furthermore, all two-layer samples showed higher CO sensitivities than single-layer samples. The CO sensitivity of ZnO:Al/La0.8Sr0.2Co0.5Ni0.5O3 thin film was 45% for 500 ppm CO at a sensing temperature of 200°C.  相似文献   

20.
The mechanism responsible for the charge transport in thin ferroelectric Hf0.5Zr0.5O2 films has been studied. It is shown that in these films the transport mechanism is phonon-assisted tunneling between the traps. The optimal thickness of dielectric film for TiN/Hf0.5Zr0.5O2/Pt structures is determined. As a result of comparing the experimental current–voltage (I–V) characteristics of TiN/Hf0.5Zr0.5O2/Pt structures with the calculated ones, the thermal and optical energies of the traps are determined and the concentration of the traps is estimated. A comparison between the transport properties of ferroelectric and amorphous Hf0.5Zr0.5O2 films is carried out. It is shown that the charge transport mechanism in this dielectric does not depend on its crystalline phase. A method for decreasing leakage currents in Hf0.5Zr0.5O2 is proposed. A study of the resource of repolarization cycles for TiN/Hf0.5Zr0.5O2/TiN metal-dielectric-metal (MDM) structures fully grown by atomic layer deposition (ALD) has been carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号