首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
HTPB推进剂的低温力学性能   总被引:3,自引:0,他引:3  
通过低温和低温恢复常温单轴拉伸试验,考察了低温条件下HTPB推进剂力学性能的变化情况,用SEM扫描电镜观察了推进剂拉伸断面形貌,分析了所得HTPB推进剂的拉伸应力-应变曲线和力学性能特性。结果表明,在低温拉伸条件下,HTPB推进剂主要表现为基体撕裂和颗粒脆断,而在低温恢复常温拉伸条件下,主要以"脱湿"破坏为主。推进剂的低温拉伸曲线具有明显的屈服现象发生,说明推进剂的屈服现象与低温有关。推进剂在低温和低温恢复常温条件下的最大抗拉强度、弹性模量和延伸率等力学性能呈现出不同的变化规律。  相似文献   

2.
通过单向拉伸力学性能实验,考察了不同测试温度和不同拉伸速率条件下NEPE推进剂力学性能的变化情况。采用扫描电镜(SEM)和原位拉伸SEM观察了推进剂拉伸断面形貌。结果表明,在低温测试条件下,NEPE推进剂最大伸长率较常温条件下显著降低,最大抗拉强度较常温和高温条件下显著升高,NEPE推进剂的破坏主要表现在黏合剂的撕裂和固体颗粒的断裂;在高温、慢拉伸速率的测试条件下,推进剂断裂时结构被破坏的程度较大,NEPE推进剂的破坏首先发生在固体颗粒堆积处,再到黏合剂网络结构。推进剂断裂的过程是推进剂拉伸取向与裂纹扩展之间的竞争过程。  相似文献   

3.
采用单轴拉伸和扫描电镜(SEM)法,研究了硝酸酯增塑聚醚(NEPE)推进剂在宽温域(–30~70℃)、宽拉伸速率(0.5~12 000 mm/min)下应力–应变曲线和拉伸断面形貌变化。结果表明,NEPE推进剂的力学性能曲线受温度和拉伸速率影响较大。随温度降低和拉伸速率升高,其应力–应变曲线从逐渐上升的曲线转变为阶跃两段式上升形状,推进剂拉伸断面颗粒脱离和基体撕裂越来越明显,高温和慢拉、低温和快拉的“偶合”作用,均加剧了推进剂内部损伤的发生。最大抗拉强度(最大拉伸应力)与拉伸速率具有较好的线性双对数关系,该变化规律可采用高分子链段的应力松弛理论进行解释,而最大伸长率(最大拉伸应变)受拉伸速率影响无明显规律。  相似文献   

4.
分别以两种Ⅰ类高氯酸铵(AP)为氧化剂,采用立式混合及真空喷淋浇注工艺制备了两种丁羟推进剂(HTPB);采用扫描电镜(SEM)研究了AP的微观形貌及HTPB推进剂的拉伸断面;探讨了推进剂在拉伸过程中的破坏机理;考察了不同形貌的AP在常温(20℃)和低温(-40℃)下对HTPB推进剂单向拉伸力学性能的影响。结果表明,有初始微观形貌缺陷的Ⅰ类AP局部有微裂纹或明显的突出点,且该类AP所制备的推进剂"脱湿"现象严重;拉伸断面出现AP的穿晶断裂现象,使得推进剂在常温(20℃)下的抗拉强度由0.99MPa降至0.88MPa,延伸率由48.2%降至36.6%;低温(-40℃)下的抗拉强度由2.86MPa降至2.32MPa,延伸率由62.5%降至23.5%。  相似文献   

5.
NEPE推进剂的细观力学性能研究   总被引:3,自引:0,他引:3  
采用原位拉伸扫描电镜技术对NEPE推进剂的单轴拉伸破坏过程进行了研究.结果表明,固体粒子与黏合剂基体的脱湿是破坏的主要因素.采用数字图像分析方法对此破坏过程进行定量化研究,对图像的分形维数进行了计算,发现随着拉伸破坏过程的进行,分形维数逐渐增大.采用此方法计算的细观结构分形维数可以作为研究NEPE推进剂细观损伤演化的定量指标.  相似文献   

6.
从黏合剂基体网络结构、固体填料及固体填料/黏合剂基体界面特性等3个方面概述了硝酸酯增塑聚醚(NEPE)固体推进剂力学性能和固体推进剂力学模型的研究进展,并指出改善NEPE推进剂力学性能的方向。  相似文献   

7.
采用动态吸湿性能分析法测定高能推进剂的吸湿性,以典型配方NEPE(硝酸酯增塑聚醚)推进剂和低易损性推进剂为研究对象,考察了湿度对其力学性能的影响。结果表明:典型配方NEPE推进剂和低易损性推进剂吸湿性差别很大;高湿环境下,2种高能推进剂的力学性能变化差异明显;经干燥处理,典型配方NEPE推进剂存放3 d后,抗拉强度和伸长率完全恢复,而低易损性推进剂存放10 d,其抗拉强度只恢复至原先的一半。  相似文献   

8.
硝酸酯增塑聚醚推进剂   总被引:1,自引:0,他引:1  
硝酸酯增塑的聚醚推进剂(NEPE)是一种具有优异能量特性和低温力学性能的固体推进剂,代表着当前固体火箭推进剂的发表方向。介绍了 NEPE 推进剂的由来、组分、主要性能及发展方向。  相似文献   

9.
NEPE推进剂燃烧机理研究   总被引:15,自引:5,他引:10  
应用微热电偶测温和燃烧火焰单幅照相技术测得 NEPE推进剂在稳态燃烧条件下的燃烧波温度分布及火焰结构 ,研究了该推进剂中主要组分对燃烧性能的影响 ,同时利用扫描电镜 -能谱仪观测了熄火表面形貌和元素分布规律。经过综合分析 ,提出了 NEPE推进剂的燃烧过程 ,为该类推进剂燃烧物理模型的建立奠定了基础  相似文献   

10.
基于遗传神经网络的NEPE推进剂寿命预估   总被引:1,自引:0,他引:1  
将遗传算法和神经网络相结合,建立了NEPE推进剂寿命预估的遗传神经网络(GA-BP)模型.以推进剂拉伸强度下降至原来的50%作为失效判据,利用GA-BP模型预估了NEPE推进剂在常温(20℃,相对湿度65%)下,可靠度为90%时的贮存寿命约为12.5年.结果表明,该模型预估精度高,泛化能力强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号