首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Although feedback does not increase the capacity of an additive white noise Gaussian channel, it enables prediction of the noise for non-white additive Gaussian noise channels and results in an improvement of capacity, but at most by a factor of 2 (Pinsker, Ebert, Pombra, and Cover). Although the capacity of white noise channels cannot be increased by feedback, multiple access white noise channels have a capacity increase due to the cooperation induced by feedback. Thomas has shown that the total capacity (sum of the rates of all the senders) of an m-user Gaussian white noise multiple access channel with feedback is less than twice the total capacity without feedback. The present authors show that this factor of 2 bound holds even when cooperation and prediction are combined, by proving that feedback increases the total capacity of an m-user multiple access channel with non-white additive Gaussian noise by at most a factor of 2  相似文献   

2.
陈新永  杨瑞娟  李晓柏 《信号处理》2012,28(10):1453-1458
提出一种基于子载波消噪和小波阈值去噪的多天线频谱池信道估计方法.多天线接收信号携带的噪声同时分布在禁用子载波和可用子载波上,为了降低噪声对信道估计带来的影响,需要分步消除这两部分噪声。禁用子载波携带的噪声可在频域消除,可用子载波上的信号可通过小波变换做降噪处理.在低信噪比和没有信道统计特性的条件下,将信号转换到频域对禁用子载波做消噪处理,采用最小二乘(Least square,L S)方法在时域进行信道估计,并对各支路信道估计进行小波阈值去噪处理,进一步降低可用子载波噪声对信道估计性能的影响.最后通过最大比合并(Maximal Ratio Combining,MRC)的方法得到合并信号的最小二乘信道估计.仿真分析表明,采用子载波消噪和小波阈值去噪的信道估计方法可有效提高多天线频谱池系统性能.   相似文献   

3.
韩帅  王金明  孟维晓  徐赛  李静涛 《信号处理》2022,38(9):1872-1880
近些年来,人们一直在开发可重构智能表面(Reconfigurable Intelligent Surface,RIS),它是一种由许多无源反射器组成的低成本结构,可以自由地改变每个元素的反射系数,并重新配置无线传输环境以改变入射信号的传播。由于具有若干新型和独特的优势,RIS应用场景广泛,关于其在物理层安全中应用的研究蓬勃发展。与此同时,物理层安全研究中窃听者的信道状态信息(Channel State Information,CSI)一直是人们讨论的热点,实际通信场景中窃听CSI通常是不易获取或未知的。因此本文考虑了一个更接近现实的情况,即针对窃听CSI未知的场景,考虑存在一个合法接收者以及多个非法窃听者,从功率分配的角度出发,结合波束成形,设计一种多RIS辅助的人工噪声与功率分配方案,通过对基站波束成形矩阵和RIS反射系数的交替优化,并应用二分法,使得在合法接收用户信号质量不变的前提下,降低基站处发送保密信息至合法用户所需的功率,降低其接收信号的信干噪比,进而提高系统的保密容量。同时考虑到了多个RIS协作辅助保密通信不一定最优,并可能增加系统优化的复杂度,设计了多个RIS的选择方案,...  相似文献   

4.
We derive the performance limits of a radio system consisting of a transmitter with t antennas and a receiver with r antennas, a block-fading channel with additive white Gaussian noise (AWGN), delay and transmit-power constraints, and perfect channel-state information available at both the transmitter and the receiver. Because of a delay constraint, the transmission of a codeword is assumed to span a finite (and typically small) number M of independent channel realizations; therefore, the relevant performance limits are the information outage probability and the “delay-limited” (or “nonergodic”) capacity. We derive the coding scheme that minimizes the information outage probability. This scheme can be interpreted as the concatenation of an optimal code for the AWGN channel without fading to an optimal beamformer. For this optimal scheme, we evaluate minimum-outage probability and delay-limited capacity. Among other results, we prove that, for the fairly general class of regular fading channels, the asymptotic delay-limited capacity slope, expressed in bits per second per hertz (b/s/Hz) per decibel of transmit signal-to-noise ratio (SNR), is proportional to min (t,r) and independent of the number of fading blocks M. Since M is a measure of the time diversity (induced by interleaving) or of the frequency diversity of the system, this result shows that, if channel-state information is available also to the transmitter, very high rates with asymptotically small error probabilities are achievable without the need of deep interleaving or high-frequency diversity. Moreover, for a large number of antennas, delay-limited capacity approaches ergodic capacity  相似文献   

5.
In this paper, we consider the problem of frequency acquisition synchronization by using multiple antennas over wireless fading channels. We introduce frequency synchronization with different combining schemes including space diversity and time diversity. Their performance is estimated for a Rayleigh fading channel with an analysis both theoretically and by simulation. We investigate the relationship between the mean squared error (MSE) and the average signal‐to‐noise ratio (SNR) for combining of different blocks and antennas. Both the carrier frequency offset and the sampling frequency offset are estimated when multiple antennas are utilized for signal transmission. The estimation with maximum ratio combining (MRC) scheme is presented in detail, and the estimation with selection combining scheme and equal gain combining scheme are introduced briefly. The simulation results explicitly show that the performance of the frequency acquisition synchronization with MRC scheme is better than that of others and that the MSE at low SNR is not very close to the Cramér–Rao low bound in multiblock combining frequency synchronization. Furthermore, the results address that in order to improve the performance, the total number of receive antennas will be increased exponentially. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Full‐duplex (FD) mode of communication with efficient transmission scheme is a promising approach for 5G wireless systems by improving the spectral efficiency. This can be attained by making use of various precoding approaches. We propose a new co‐channel interference (CCI)‐aware improvement to signal‐to‐leakage‐and‐noise ratio (SLNR) technique and a suppression filter at the receiver to whiten the interference for the downlink channel. As well, for the uplink (UL) communication, we propose a self‐interference (SI)‐aware enhancement to SLNR scheme and designing a precoder using self‐interference plus noise covariance matrix. The total spectral efficiency is obtained from the sum‐rates of both downlink and uplink communication systems. Simulation results verify that the spectral efficiency (SE) of FD using the proposed scheme performs well relative to the half‐duplex system for all Rician factor and for small powers at the base station (BS) and UL communication channel users. Moreover, as the number of users grows, which entails that as the number of receiving antennas greater than the number of antennas at the BS the SLNR scheme still works, nonetheless, zero‐forcing (ZF) and block‐diagonalization (BD) precoding schemes failed. This is due to the fact that designing a precoder based on SLNR scheme supports multiple numbers of antennas at the base station and users compared with ZF and BD by compromising the interference and noise. However, for the cases of ZF and BD approaches failed due to both schemes require the number of transmit antennas at the BS to be larger than the sum of the receiving antennas at all users.  相似文献   

7.
线型小区中V-BLAST两根分布发射天线的位置优化   总被引:2,自引:2,他引:0  
在分布式发射天线多输入多输出(MIMO)系统中,不同的发射天线位置将影响系统的性能。针对这一问题,该文在考虑了传播时延、路径损耗、阴影衰落、小尺度衰落和高斯白噪声的基础上研究了V-BLAST两根分布式发射天线在线型小区的平均误码率(AABER)。理论分析表明存在一个关于小区中心对称的位置使得AABER性能最优,这一位置可以通过数值计算的方法得到。仿真结果验证了理论分析的正确性。  相似文献   

8.
The authors propose and study an adaptive error-control coding scheme for binary digital FM (BFM) mobile radio transmission. The scheme employs code combining through packet retransmissions. The number of transmissions of a packet is in proportion to the channel fading/noise levels, which is in contrast to time diversity techniques where a fixed number of repetitions of a data packet is performed even in the absence of channel errors. Furthermore, the receiver uses received signal envelopes as channel state information, which significantly improves the throughput and bit error rate (BER) performance. Performance of the proposed scheme is analyzed for frequency-flat Rayleigh fading channels with additive white Gaussian noise (AWGN), co-channel interference and random FM noise  相似文献   

9.
The capacity of multiple-input multiple-output (MIMO) wireless channels is limited by both the spatial fading correlation and rank deficiency of the channel. While spatial fading correlation reduces the diversity gains, rank deficiency due to double scattering or keyhole effects decreases the spatial multiplexing gains of multiple-antenna channels. In this paper, taking into account realistic propagation environments in the presence of spatial fading correlation, double scattering, and keyhole effects, we analyze the ergodic (or mean) MIMO capacity for an arbitrary finite number of transmit and receive antennas. We assume that the channel is unknown at the transmitter and perfectly known at the receiver so that equal power is allocated to each of the transmit antennas. Using some statistical properties of complex random matrices such as Gaussian matrices, Wishart (1928) matrices, and quadratic forms in the Gaussian matrix, we present a closed-form expression for the ergodic capacity of independent Rayleigh-fading MIMO channels and a tight upper bound for spatially correlated/double scattering MIMO channels. We also derive a closed-form capacity formula for keyhole MIMO channels. This analytic formula explicitly shows that the use of multiple antennas in keyhole channels only offers the diversity advantage, but provides no spatial multiplexing gains. Numerical results demonstrate the accuracy of our analytical expressions and the tightness of upper bounds.  相似文献   

10.
In this paper, a signal detection scheme for cognitive radio (CR) based on the Bussgang theorem is proposed. The proposed scheme calculates the statistical difference between Gaussian noise and the primary user signal by applying the Bussgang theorem to the received signal. Therefore, the proposed scheme overcomes the noise uncertainty and gives scalable complexity according to the zero‐memory nonlinear function for a mobile device. We also present the theoretical analysis on the detection threshold and the detection performance in the additive white Gaussian noise channel. The proposed detection scheme is evaluated by computer simulations based on the IEEE 802.22 standard for the wireless regional area network. Our results show that the proposed scheme is robust to the noise uncertainty and works well in a very low signal‐to‐noise ratio.  相似文献   

11.
We propose a transmit diversity CDMA scheme which is a combination of convolutional spreading (CS) and space-time spreading (STS) over multiple-input single-output (MISO) multipath Rayleigh fading channels. With our scheme, multiuser detection over an MISO multipath channel is transformed to single-user detection over a single-input single-output (SISO) multipath channel as the scheme by Petre et al. Because of its simple configuration, it is immediate to see that our scheme realizes full transmit- and path-diversity for two transmit antennas. We extend the system to four transmit antennas employing quasi-orthogonal construction and show a necessary and sufficient condition for full transmit- and path-diversity to be realized. The proposed scheme requires less hardware complexity and less latency than the one by Petre et al.  相似文献   

12.
In broadband wireless communications, coded orthogonal frequency-division multiplexing (OFDM) can be used with multiple receive antennas to achieve both frequency diversity and space diversity. In this scenario, the optimal approach is subcarrier-based space combining. However, such an approach is quite complex, because multiple discrete Fourier transform (DFT) blocks, each per receive antenna, are used. We propose a pre-DFT processing scheme based upon eigenanalysis. In the proposed scheme, the received signals are weighted and combined both before and after the DFT processing. As a result, the required number of DFT blocks can be significantly reduced. With perfect weighting coefficients, the margin of the performance improvement decreases along with the increase of the number of DFT blocks, thus enabling effective performance and complexity tradeoff. To achieve a maximum average pairwise codeword distance, it will be shown that the maximum number of DFT blocks required is equal to the minimum of the number of receive antennas and the number of distinct paths in the channel. When the number of distinct paths is larger than the number of receive antennas and with a smaller number of DFT blocks, extensive simulation results will also show that near-optimal performance can still be achieved for most channels. Finally, in an OFDM system with differential modulation, we use a signal covariance matrix to obtain the weighting coefficients before the DFT processing. In this case, simulation results will demonstrate that the performance of the proposed scheme can be better than subcarrier-based space combining, but with much lower complexity.  相似文献   

13.
This work presents a space‐frequency prefiltering scheme for slowly time‐varying TDD MC‐CDMA downlink communications with multiple antennas at the base station (BS). Unlike the conventional spatially uncorrelated block fading channel model, both channel variation in each packet and spatial correlation are considered in the design. In the TDD mode, the mobile terminals (MTs) transmit training signals at the end of each uplink packet. In the following downlink packet, the BS computes the signal weights on different antennas and subcarriers for each MT in each symbol period based on the channel state predicted from the received training signals. The goal is to minimize the total required transmit power while keeping the received signal‐to‐interference‐plus‐noise ratio (SINR) as the target for each MT. Moreover, the maximum packet length for satisfying the SINR requirements has been determined. The results indicate that the total required transmit power can be reduced by a lower mobile speed or more BS antennas. As a result, the maximum packet length can be extended in virtue of the power reduction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Chernoff bounds on pairwise error probabilities of space-time codes   总被引:3,自引:0,他引:3  
We derive Chernoff bounds on pairwise error probabilities of coherent and noncoherent space-time signaling schemes. First, general Chernoff bound expressions are derived for a correlated Ricean fading channel and correlated additive Gaussian noise. Then, we specialize the obtained results to the cases of space-time-separable noise, white noise, and uncorrelated fading. We derive approximate Chernoff bounds for high and low signal-to-noise ratios (SNRs) and propose optimal signaling schemes. We also compute the optimal number of transmitter antennas for noncoherent signaling with unitary mutually orthogonal space-time codes.  相似文献   

15.
推导了MIMO-OFDM系统在衰落信道下的各态历经容量、最优发送策略、使用等功率分配时的容量上界以及相对于单天线OFDM系统的容量增益。结果表明:天线数和平均接收信噪比是决定MIMO-OFDM系统信道容量的关键因素。天线数越多或者接收信噪比越大,信道的容量越大,信道容量几乎不受多径时延扩展的影响。慢衰落信道下的最大信道容量可以使用空-频两维注水算法得到,当接收信噪比足够大时,最大信道容量也可以用平均分配发送功率的方法逼近。  相似文献   

16.
侯晓赟  黄庭金  朱艳  范伟 《信号处理》2014,30(11):1263-1266
针对未来多天线通信系统的安全问题,提出了一种增强无线物理层安全的传输策略。该策略基于发射天线的选择以及人工噪声,并采用Alamouti编码。它可以使发射机和接收机以较低的复杂度代价提高合法信道的分集增益,同时有效干扰窃听信道,使通信系统获得更高的安全容量。对系统安全容量、天线数量、以及信息信号与人工噪声之间的功率分配等问题进行了研究,仿真结果表明,该传输策略能够有效地增强物理层安全。   相似文献   

17.
In Part I of this paper, we presented a scheme for effectively exploiting a noiseless feedback link associated with an additive white Gaussian noise channel with {em no} signal bandwidth constraints. We now extend the scheme for this channel, which we shall call the wideband (WB) scheme, to a band-limited (BL) channel with signal bandwidth restricted to(- W, W). Our feedback scheme achieves the well-known channel capacity,C = W ln (1 +P_{u,v}/N_{0} W), for this system and, in fact, is apparently the first deterministic procedure for doing this. We evaluate the fairly simple exact error probability for our scheme and find that it provides considerable improvements over the best-known results (which are lower bounds on the performance of sphere-packed codes) for the one-way channel. We also study the degradation in performance of our scheme when there is noise in the feedback link.  相似文献   

18.
近来,可重构智能表面(RIS)作为一种全新的革命性技术引起了学术界和工业界的广泛关注。随着通信频率的提高以及RIS孔径的增大,RIS辅助无线通信的工作条件逐渐靠近天线的近场辐射模式,而非仅仅存在传统意义中的远场辐射。单独考虑远场或者近场的信道模型均无法准确刻画RIS辅助无线通信的传输特性,造成性能损失。针对此问题,该文梳理了大规模RIS辅助通信近场和远场信道模型,通过引入权重因子,构建了大规模RIS辅助无线通信场景下近远场混合信道模型。在此基础上,推导了近远场混合信道模型下系统的增益与损耗,并进行鲁棒性分析,仿真结果表明该混合模型带来的系统增益与模型鲁棒性均显著提升。  相似文献   

19.
李长水 《电信科学》2016,32(5):127-131
使用梅哲-G 函数,推导了Nakagami-m 衰落发射天线选择(TAS)/最大比合并(MRC)系统的随机编码错误指数(RCEE)、遍历容量、截止速率、删改指数的精确表达式。计算结果表明,Nakagami-m衰落TAS/MRC系统的错误指数与信道衰落参数、信道编码速率、收发天线数目、信道相干时间等因素有关。信道衰落系数越大、编码速率越大、收发天线数目越多,通信系统的RCEE越大,相应的译码错误概率越小,系统的通信可靠性越高。对于给定译码错误概率的MIMO无线通信系统,可以通过计算系统的RCEE来估计信道所需的编码长度、收发天线数目、信道相干时间和空间衰落相关时的编码需求。  相似文献   

20.
We consider binary orthogonal signaling over a nonselective Rician-fading channel with additive white Gaussian noise. The received signal over such a channel may have both a specular component and a scatter (Rayleigh-faded) component. If there is only a scatter component, the noncoherent receiver is optimal. If there is only a specular component, the optimal receiver is the coherent receiver. In general, the optimal receiver for a Rician channel depends on the strengths of the two signal components and the noise density, and the set of possible optimal receivers is infinite. We consider a system in which the noncoherent receiver and the coherent receiver are employed in a parallel configuration for a symbol-by-symbol demodulation of the received signal. Each sequence of transmitted symbols produces a sequence at the output of each of the parallel receivers. The task of identifying which of these received sequences is a more reliable reproduction of the transmitted sequence is the data verification problem. In this paper, we show that data verification can be accomplished by combining side information from the demodulators with a suitable error-control coding scheme. The resulting system is a universal receiver that provides good performance over the entire range of channel parameters. In particular, the universal receiver performs better than the traditional noncoherent receiver  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号