首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将铁氯化物混入聚硅氧烷前驱体进行交联成型和热解,利用热解中在聚硅氧烷中形成的孔隙和在孔隙中形成的铁颗粒为催化剂,在硅氧碳陶瓷基体中原位生长出硅氧碳纳米纤维,制备出硅氧碳陶瓷和硅氧碳纤维复合材料。用扫描电子显微镜观察材料断面,结果显示:在硅氧碳陶瓷基体中生长出纳米纤维,部分纤维取向分布,纤维紧贴于硅氧碳陶瓷基体,二者呈良好结合;能谱分析显示纤维中含硅、氧和碳,证实其为硅氧碳。所制得的硅氧碳陶瓷和硅氧碳纤维的复合结构不同于通常热解纯聚硅氧烷形成的单相的硅氧碳结构,在硅氧碳基体中的硅氧碳纤维是在聚硅氧烷前驱体中引入的铁催化剂在热解过程中通过催化聚硅氧烷一维生长形成的,该过程可用于发展一步法原位制备纳米纤维前驱体陶瓷复合材料。  相似文献   

2.
Ceramic Microtubes from Preceramic Polymers   总被引:2,自引:0,他引:2  
A novel process for the production of ceramic microtubes involving the microextrusion of preceramic polymers was studied. Microtubes with a wide range of inner and outer diameters and several centimeters long were produced from two silicone resins. A coextrusion approach was also used to extend the forming capability of the technique. The addition of carbon black resulted in electrically conductive silicon oxycarbide (SiOC) ceramic microtubes. SiOC microtubes possessed a high bending strength, ranging from ∼30–1100 MPa.  相似文献   

3.
Mechanical Properties of Silicon Oxycarbide Ceramic Foams   总被引:6,自引:0,他引:6  
The mechanical properties of ceramic foams obtained through a novel process that uses the direct foaming and pyrolysis of preceramic polymer/polyurethane solutions were investigated. The elastic modulus, flexural strength, and compressive strengths were obtained for foams in the as-pyrolyzed condition; values up to 7.1 GPa, 13 MPa, and 11 MPa, respectively, were obtained. The strength of the foam was virtually unchanged at temperatures up to 1200°C in air; however, long-term exposure at 1200°C led to a moderate degradation in strength, which was attributed to the evolution of intrastrut porosity during the oxidation of residual free carbon, as well as devitrification of the foams struts.  相似文献   

4.
泡沫陶瓷由于具有一系列优异的性能,使得其应用范围越来越广泛,其制备方法也在不断地发展.先驱体转化法制备泡沫陶瓷是20世纪末才出现的一种新型工艺.它具有制备温度低、陶瓷组成和结构町设计、容易成型复杂构件等优点,成为目前泡沫陶瓷制备方法中的一个研究热点.根据泡沫陶瓷制备过程中成孔原理的不同,先驱体转化法制备泡沫陶瓷大致町以分为三类:(1)直接发泡法;(2)有机泡沫浸渍法;(3)添加造孔剂法.本文详细地介绍了由这三类先驱体转化法制备泡沫陶瓷的研究现状,并分析了其优缺点以及亟待解决的问题.  相似文献   

5.
This paper reports the synthesis and characterization of an organic silsesquioxane (SQ) containing Si vinyl and Si H groups named as vinylhydridosilsesquioxane (SQVH-12). Detailed investigation of the structure of this organosilsesquioxane revealed that SQVH-12 has a highly cross-linked (polycyclic) Si O network of silsesquioxane with Si vinyl and Si H functional groups. Thermogravimetric analysis of the pyrolysis behavior of SQVH-12 yielded a high percentage of ceramic residue (~92%) at 1200°C under an argon atmosphere. The presence of functional groups in SQVH-12 and the high rate of ceramic residue highlights the potential usefulness of SQVH-12 as a filler for vinyl-containing polysiloxanes. Thus, further research of SQVH-12 can find applications in a wide variety of areas such as additive manufacturing, protective coatings, and advanced composites.  相似文献   

6.
Two types of polymeric precursors for silicon carbide (SiC) were dissolved in dichloromethane. Subsequently, between 10–80 wt% of silicon nitride (Si3N4) and titanium carbide (TiC) powder were added separately into the solutions to make SiC-Si3N4 and SiC-TiC suspensions. Cubes of polyurethane (PU) foams were soaked in precursor solution and suspensions and pyrolyzed in flowing nitrogen to produce SiC, SiC-Si3N4 and SiC-TiC composite foams. Some foams were heated further in nitrogen to 1600°C. Shrinkage observed after pyrolysis and further heating the foams was measured and can be reduced by varying the concentration of polymeric precursor, Si3N4 and TiC content. The foams produced have porosities in the range 85–96%. The average compressive strength of the foams is in the range of 1.1–1.6 MPa.  相似文献   

7.
多孔陶瓷作为重要的陶瓷材料,广泛应用于冶金、化工等众多领域,其制备工艺的改进一直是研究重点。先驱体转化法是20世纪末提出的制备多孔陶瓷新型工艺,利用陶瓷先驱体高温裂解产生气体的特性,可将其作为粘结剂、骨料、发泡剂制备多孔陶瓷,具有成型工艺简单,烧成温度低等特点,拥有广泛的应用前景。本文主要从以上几个方面简要介绍先驱体转化法制备多孔陶瓷的工艺、结构和性能的研究现状。  相似文献   

8.
SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenzene (DVB) via hydrosilylation reaction in the presence of a Pt catalyst under highly diluted conditions. Acetone and cyclohexane are used as solvent in our study. Wet gels are subsequently supercritically dried with CO2 to get the final preceramic aerogels. The SiOC ceramic aerogels are obtained after a pyrolysis treatment at 900°C in two different atmospheres: pure Ar and H2 (3%)/Ar mixtures. The nature of the solvent has a profound influence of the aerogel microstructure in terms of porosity, pore size, and specific surface area. Synthesized SiOC ceramic aerogels have similar chemical compositions irrespective of processing conditions with ~40 wt% of free carbon distributed within remaining mixed SiOC matrix. The BET surface areas range from 215 m2/g for acetone samples to 80 m2/g for samples derived from cyclohexane solvent. The electrochemical characterization reveals a high specific reversible capacity of more than 900 mAh/g at a charging rate of C (360 mA/g) along with a good cycling stability. Samples pyrolyzed in H2/Ar atmosphere show a high reversible capacity of 200 mAh/g even at a high charging/discharging rate of 20 C. Initial capacities were recovered after whole cycling procedure indicating their structural stabilities resisting any kind of exfoliations.  相似文献   

9.
3D ceramic parts are of great interest for various applications including aerospace, defense, electronics, photonics, and biomedical. Yet, additive manufacturing of ceramics is challenging due to their poor machinability. Herein, two approaches based on the chemical modification of silicon resins to obtain UV-curable preceramic precursors of SiOC are described. The dual functionality of the synthesized resins acting both as preceramic precursor and as photopolymerizable entity under UV light is exploited. A set of characterization techniques has allowed the investigation of the mechanisms involved in the synthesis of the inorganic SiOC precursors according to the following approaches: (1) blend of the silicon resin with photoactive monomers and (2) synthesis of a single source UV-curable preceramic silicon resin. A correlation between the nature of the precursor and the properties of the derived SiOC is analyzed. From a technological point of view, the materials can be fabricated as dense or crack-free porous customized objects with low mass loss and optimal surface quality.  相似文献   

10.
In this work, we present the electrochemical behavior and microstructural analysis of silicon oxycarbide (SiOC) ceramics influenced by an addition of polystyrene (PS). Polymer-derived ceramics were obtained by pyrolysis (1000°C, Ar atmosphere) of different polysiloxanes prepared by sol–gel synthesis. This method is very effective to obtain desired composition of final ceramic. Two alkoxysilanes phenylthriethoxysilane and diphenyldimethoxysilane were used as precursors. Before pyrolysis polysiloxanes were mixed with PS using toluene as a solvent. Blending with PS affects the microstructure and free carbon content in the final ceramic material. Free carbon phase has been confirmed to be a major lithium storage host. Nevertheless, we demonstrate here that capacity does not increase linearly with increasing carbon content. We show that the amount of SiO4 units in the SiOC microstructure increases the initial capacity but decreases the cycling stability and rate capability of the material. Furthermore, the microstructure of the free carbon influences the electrochemical performance of the ceramic: More ordered graphitic clusters favor better rate capability performance.  相似文献   

11.
In this study the high temperature stability (crystallization and decomposition) of two silicon oxycarbide glasses with a similar amount of free carbon (8.3 vs 9.6 wt%) but different content of Si-C bonds (SiC0.22O1.57 vs SiC0.07O1.86) is presented. The two SiOC glasses are obtained from the same precursor (2 µm methyl-silsesquioxane spheres) via pyrolysis at 1100°C in inert (Ar) or reactive (CO2) atmospheres. Further annealing in Ar flow at temperatures above 1100°C and up to 1500°C is performed and the samples are characterized by Fourier Transformed Infrared Spectroscopy (FT-IR) and X-ray diffraction (XRD). For comparison purposes the same precursor was annealed in air flow to obtain SiO2 and its high temperature evolution is also studied. Results suggest that the onset for the carbothermal reduction is not dependent on the amount of Si-C bonds. Moreover, contrary to what is usually reported in the scientific literature, silica phase present in the SiOC glasses does not show, in the same experimental conditions, superior crystallization resistance compared to pure silica glass.  相似文献   

12.
本文介绍用有机硅陶瓷先驱体(Organosilane Preceramic Polymer)成型非氧化物陶瓷制品的研究进展。着重介绍为提高先驱体热解陶瓷产率,降低烧结制品收缩率所采取的先驱体分子设计及成型、交联固化、烧成、烧结工艺的研究状况。  相似文献   

13.
We present experimental and analytical results for the pyrolysis reactions underlying the conversion of a cross-linked polymer into an amorphous ceramic material. The activation energies, obtained from thermogravimetric data, and chemical analysis of the volatiles by mass spectroscopy are used to identify the reaction pathways. The reaction is determined to be first-order, which is consistent with its solid-state nature. The magnitude of the weight loss is analyzed to calculate the number of molecular sites in the polymer that participate in the reaction. The experiments were conducted on a polymer made from silsesquioxanes that convert into silicon oxycarbide ceramics on pyrolysis. The results show that <2.5% of the silicon atoms in the polymer are removed as volatile silanes, and less than one-half of the carbon atoms are lost as methane. These results are a first step in understanding the molecular basis for the ceramic yield, as well as the evolution of the nanostructure as the material changes from an organic into a ceramic state by reactions that can occur at <850°C.  相似文献   

14.
Flexible ceramic nanofibers are highly desired due to their potential applications in free‐standing catalyst supports, fine particulate filters and flexible electronic devices. In this work, robust SiOC fibrous membranes composed of randomly oriented nanofibers with an average diameter of 550 nm were fabricated by a combination of electrospinning and post heat‐treatment process. The mechanical properties of the as‐prepared membranes were enhanced significantly through in situ embedding of palladium nanoparticles into the SiOC fibers. The optimized palladium‐doped SiOC fibrous membrane demonstrated a low flexural modulus of 7.79 kPa and a high tensile strength of 33.2 MPa. Reduced flaw size, initiation of nanocracks and pinning effect were proposed to explain the enhancement mechanism. Furthermore, the flexible SiOC membrane with excellent corrosion resistance exhibits a high filtration efficiency of 99.6% when the membrane weight is 4.8 g m?2, suggesting efficient filtration applications in harsh environments. This work also provides a feasible strategy for the design and fabrication of the flexible amorphous ceramic fiber membranes for various applications.  相似文献   

15.
SiOC is one of the most promising anodes for lithium-ion batteries, which shows the good structural stability and high capacity comparing to commercial graphite anode. In this paper, different SiOC anodes (SiOC-217, SiOC-H44, and SiOC-MK) were prepared from polymer precursors with different side groups (phenyl, methyl-phenyl, methyl) to investigate the effects of free carbon on the electrochemical performance of SiOC anodes. The results of X-ray photoelectron spectroscopy presented that SiOC was composed by different SiOxC4−x units and free carbon phase. The initial discharge capacity of SiOC-217 was 742.67 mA h g−1. After 100 cycles, the reversible capacity of SiOC-217 reached 450.65 mA h g−1 at 0.2 C, indicating a capacity retention rate of 60.68%. After cycling at high current densities, SiOC-217 exhibited a high discharge capacity of 592.88 mA h g−1 at 0.1 C. SiOC-217 exhibited excellent electrochemical performance due to the high content of free carbon phase. Furthermore, the high contents of SiO2C2 and SiO3C units further enhanced the improvement of electrochemical performance.  相似文献   

16.
Polymerization of Cl2Si(CH3)CH2Cl with Mg in THF, followed by reduction with LiAlH4, gave a polycarbosilane with Si-H groups and branches at the Si atoms. The polymer could be cross-linked thermally at 150°C. Pyrolysis of the cross-linked material gave SiC with a yield of 70%.Presented at the XXVIth Silicon-Symposium, Indiana University-Purdue University at Indianapolis, March 26–27, 1993.  相似文献   

17.
介绍了国内外用有机硅聚合物制造陶瓷纤维及陶瓷基复合材料方面的进展。  相似文献   

18.
A technique for fabrication of β'-SiAlON-based ceramics in three-dimensional woven fabrics of BN-coated SiC (Hi-Nicalon™) fibers was developed by reactive melt infiltration in a controlled N2 atmosphere. β'-SiAlON was produced in situ by the reaction of β-Si3N4, AlN, and Y-Al-Si-O molten glass. The wettability of the fibers with the molten glass was improved by infiltration and pyrolysis of perhydropolysilazane, resulting in fully dense matrix composites. The reaction between the fiber and molten glass could be depressed by increasing the N2 partial pressure during the melt infiltration. The inhibition of the interfacial reaction may be related to the formation of carbon and oxynitride on the SiC fiber, in agreement with thermodynamic calculations as a function of N2 partial pressure. The fabricated composites had a high ultimate flexure strength and a large work of fracture at room temperature. Degradation of the mechanical performance of the composites was small, even at 1773 K in an argon atmosphere.  相似文献   

19.
聚合物微发泡材料制备技术应用研究进展   总被引:4,自引:1,他引:3  
何亚东 《塑料》2004,33(5):9-15
20世纪90年代末,超临界流体(SCF)制备聚合物微发泡材料实现了工业化,这种方法制备的微发泡材料具有非常多的优点,被誉为"21世纪的新型材料"。主要介绍了聚合物微发泡材料应用研究方面的进展,主要涉及聚合物微发泡材料的制备方法及其特点,工艺参数对成型过程的影响及成型设备的特点等方面,重点探讨了非连续方法和连续方法的提出及其发展过程。  相似文献   

20.
Silicon oxycarbide (SiOC) ceramics with highly adjustable properties and microstructures have many promising applications in batteries, catalysis, gas separation, and supercapacitors. In this study, additive structures on the nucleation and growth of SiO2 within SiOC ceramics are investigated by adding cyclic tetramethyl‐tetravinylcyclotetrasiloxane (TMTVS) or caged octavinyl‐polyhedral oligomeric silsesquioxane (POSS) to a base polysiloxane (PSO) precursor. The effects of the 2 additives on the polymer‐to‐ceramic transformation and the phase formation within the SiOC are discussed. POSS encourages SiO2 nucleation and leads to more SiO2 formation with significantly increased ceramic yield, which subsequently leads to higher specific surface of 1557 m2/g with a larger pore size of ~1.8 nm for the porous SiOC. High TMTVS content decreases both the specific surface area and pore volume of the resulting porous SiOCs. This study demonstrates a new approach of using Si‐rich additive POSS to increase the SiOC yield while maintaining or even increasing the specific surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号