首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anagrus nilaparvatae, an egg parasitoid of the rice brown planthopper Nilaparvata lugens, was attracted to volatiles released from N. lugens-infested plants, whereas there was no attraction to volatiles from undamaged plants, artificially damaged plants, or volatiles from N. lugens nymphs, female adults, eggs, honeydew, and exuvia. There was no difference in attractiveness between plants infested by N. lugens nymphs or those infested by gravid females. Attraction was correlated with time after infestation and host density; attraction was only evident between 6 and 24 hr after infestation by 10 adult females per plant, but not before or after. Similarly, after 24 hr of infestation, wasps were attracted to plants with 10 to 20 female planthoppers, but not to plants with lower or higher numbers of female planthoppers. The attractive time periods and densities may be correlated with the survival chances of the wasps' offspring, which do not survive if the plants die before the wasps emerge. Wasps were also attracted to undamaged mature leaves of a rice plant when one of the other mature leaves had been infested by 10 N. lugens for 1 d, implying that the volatile cues involved in host location by the parasitoid are systemically released. Collection and analyses of volatiles revealed that 1 d of N. lugens infestation did not result in the emission of new compounds or an increase in the total amount of volatiles, but rather the proportions among the compounds in the blend were altered. The total amounts and proportions of the chemicals were also affected by infestation duration. These changes in volatile profiles might provide the wasps with specific information on host habitat quality and thus could explain the observed behavioral responses of the parasitoid.  相似文献   

2.
We investigated volatile infochemicals possibly involved in location of the generalist predatory mite Neoseiulus californicus to plants infested with spider mites in a Y-tube olfactometer. The predators significantly preferred volatiles from lima bean leaves infested with Tetranychus urticae to uninfested lima bean leaves. Likewise, they were attracted to volatiles from artificially damaged lima bean leaves and those from T. urticae plus their visible products. Significantly more predators chose infested lima bean leaves from which T. urticae plus their visible products had been removed than artificially damaged leaves, T. urticae, and their visible products. These results suggest that N. californicus is capable of exploiting a variety of volatile infochemicals originating from their prey, from the prey-foodplants themselves, and from the complex of the prey and the host plants (e.g., herbivore-induced volatiles). We also investigated predator response to some of the synthetic samples identified as volatile components emitted from T. urticae-infested lima bean leaves and/or artificially damaged lima bean leaves. The predators were attracted to each of the five synthetic volatile components: linalool, methyl salicylate, (Z)-3-hexen-1-ol, (E)-2-hexenal, and (Z)-3-hexenyl acetate. The role of each volatile compound in prey-searching behavior is discussed.  相似文献   

3.
The bird cherry-oat aphid, Rhopalosiphum padi (L.), and the damson-hop aphid, Phorodon humuli (Schrank), migrate at the same time of year and colonize closely related Prunus spp. as primary hosts, but utilize (1R,4aS,7S,7aR)-nepetalactol and (1RS,4aR,7S,7aS)-nepetalactol, respectively, as sex pheromones. Interactions between these sex pheromones and benzaldehyde and methyl salicylate, plant volatiles common to primary hosts of both species, were investigated to assess whether they confer reproductive isolation between these species. Female autumn migrants (gynoparae) and males of these two species were caught in the field with water traps baited with their respective sex pheromones. Rhopalosiphum padi gynoparae and males also responded positively to benzaldehyde. Release of either benzaldehyde or methyl salicylate with the conspecific sex pheromone increased catches of both species of aphid. However, releasing both plant volatiles with the sex pheromone of R. padi increased catches of gynoparae and males, but reduced those with the sex pheromone of P. humuli. These results support the hypothesis that specific plant volatiles synergize responses of autumn migrating aphids to their sex pheromone. Because these interactions are species-specific, they may be important in allowing males to discriminate between conspecific sexual females (oviparae) and those of other aphid species.  相似文献   

4.
Peanut plants, Arachis hypogaea, infected with white mold, Sclerotium rolfsii, emit a blend of organic compounds that differs both quantitatively and qualitatively from the blend emitted from plants damaged by beet armyworm (BAW; Spodoptera exigua) larvae or from uninfected, undamaged plants. Attack by BAW induced release of lipoxygenase products (hexenols, hexenals, and hexenyl esters), terpenoids, and indole. The plant-derived compound methyl salicylate and the fungal-derived compound 3-octanone were found only in headspace samples from white mold infected plants. White mold-infected plants exposed to BAW damage released all the volatiles emitted by healthy plants fed on by BAW in addition to those emitted in response to white mold infection alone. When BAW larvae were given a choice of feeding on leaves from healthy or white mold-infected plants, they consumed larger quantities of the leaves from infected plants. Exposure to commercially available (Z)-3 hexenyl acetate, linalool, and methyl salicylate, compounds emitted by white mold-infected plants, significantly reduced the growth of the white mold in solid-media cultures. Thus, emission of these compounds by infected plants may constitute a direct defense against this pathogen.  相似文献   

5.
When attacked by herbivorous insects, many plants emit volatile compounds that are used as cues by predators and parasitoids foraging for prey or hosts. While such interactions have been demonstrated in several host–plant complexes, in most studies, the herbivores involved are leaf-feeding arthropods. We studied the long-range plant volatiles involved in host location in a system based on a very different interaction since the herbivore is a fly whose larvae feed on the roots of cole plants in the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae). The parasitoid studied is Trybliographa rapae Westwood (Hymenoptera: Figitidae), a specialist larval endoparasitoid of D. radicum. Using a four-arm olfactometer, the attraction of naive T. rapae females toward uninfested and infested turnip plants was investigated. T. rapae females were not attracted to volatiles emanating from uninfested plants, whether presented as whole plants, roots, or leaves. In contrast, they were highly attracted to volatiles emitted by roots infested with D. radicum larvae, by undamaged parts of infested roots, and by undamaged leaves of infested plants. The production of parasitoid-attracting volatiles appeared to be systemic in this particular tritrophic system. The possible factors triggering this volatile emission were also investigated. Volatiles from leaves of water-stressed plants and artificially damaged plants were not attractive to T. rapae females, while volatiles emitted by leaves of artificially damaged plants treated with crushed D. radicum larvae were highly attractive. However, T. rapae females were not attracted to volatiles emitted by artificially damaged plants treated only with crushed salivary glands from D. radicum larvae. These results demonstrate the systemic production of herbivore-induced volatiles in this host-plant complex. Although the emission of parasitoid attracting volatiles is induced by factors present in the herbivorous host, their exact origin remains unclear. The probable nature of the volatiles involved and the possible origin of the elicitor of volatiles release are discussed.  相似文献   

6.
The blend of volatile compounds emitted by bean plants (Phaseolus vulgaris) infested with greenhouse whitefly (Trialeurodes vaporariorum) has been studied comparatively with undamaged plants and whiteflies themselves. Collection of the volatiles and analysis by gas chromatography revealed more than 20 compounds produced by plants infested with whitefly. Of these, 4 compounds, (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, 3-octanone, and one unidentified compound were emitted at higher levels than from the undamaged control plants. Synthetic (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, or 3-octanone all elicited a significant increase in oriented flight and landing on the source by the parasitoid, Encarsia formosa, in wind tunnel bioassays. Two-component mixtures of the compounds and the three-component mixture all elicited a similar or, in most cases, a better response by the parasitoid, the most effective being a mixture of (Z)-3-hexen-1-ol and 3-octanone. These results demonstrate that E. formosa uses volatiles from the plant-host complex as olfactory cues for host location.  相似文献   

7.
Aldrich  J. R.  Rosi  M. C.  Bin  F. 《Journal of chemical ecology》1995,21(12):1907-1920
Many terrestrial Heteroptera have small, but functional, dorsal abdominal glands as adults. The chemistry, and associated intra- and inter-specific behavior, for dorsal abdominal gland secretions from 10 species representing four genera of Pentatomidae was investigated. Eighteen volatile compounds were identified in species-specific blends from the dorsal abdominal gland secretions ofEuschistus, Acrosternum, andEurydema adults, including aliphatic, aromatic, and terpenoid constituents. Evidence from bioassays is presented that parasitic Tachinidae (Diptera) and Scelionidae (Hymenoptera) use these secretions as kairomones. A field experiment was performed to test the hypothesis that minor volatiles increase the specificity of the main pheromone component from NearcticEuschistus species, methyl (2E,4Z)-decadienoate. However, significantly fewer individuals ofE. tristigmus were captured in traps baited with the complete blend for this species than in traps baited with methyl (2E,4Z)-decadienoate alone. Thus, at the concentrations tested, these kinds of dorsal abdominal gland secretions may be epideictic, promoting spacing in the natural habitat.  相似文献   

8.
Carnivorous arthropods use volatile infochemicals emitted from prey-infested plants in their foraging behavior. Although several volatile components are common among plant species, the compositions differ among prey–plant complexes. Studies showed that the predatory mite Neoseiulus womersleyi is attracted only to previously experienced plant volatiles. In this study, we identified the attractant components in prey-induced plant volatiles of two prey–plant complexes. N. womersleyi reared on Tetranychus kanzawai-infested tea leaves showed significant preference for a mixture of three synthetic compounds [mimics of the T. kanzawai-induced tea leaves volatiles: (E)-β-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and (E,E)-α-farnesene] at a level comparable to that for T. kanzawai-induced tea plant volatiles. However, mixtures lacking any of these compounds did not attract the predatory mites. Likewise, N. womersleyi reared on T. urticae-infested kidney bean plants showed a significant preference for a mixture of four synthetic compounds [mimics of the T. urticae-induced kidney bean volatiles: DMNT, methyl salicylate (MeSA), β-caryophyllene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene] at a level comparable to that for T. urticae-induced kidney bean volatiles. The absence of any of the four compounds resulted in no attraction. These results indicate that N. womersleyi can use at least four volatile components to identify prey-infested plants.  相似文献   

9.
The responses of femaleAphidius ervi to odors from a host food plant (Vicia faba), host aphids (Acyrthosiphon pisum), nonhost aphids (Aphis fabae), and aphid-plant complexes were investigated in a specially designed wind tunnel and a Y-tube olfactometer. In single-target (no-choice) and two-target (dual-choice) experiments, plant volatiles played a crucial role in the host foraging behavior ofA. ervi. The odor from theA. pisum-plant complex elicited the strongest responses byA. ervi females, followed by the odor from plants previously damaged by the feeding ofA. pisum. There was a significantly weaker response to odor fromA. pisum in the absence of the plant and to undamaged plants. Similarly, mechanically damaged plants and plants infested with the nonhost aphidA. fabae did not elicit strong responses. A plant that had been damaged byA. pisum and subsequently washed with distilled water was as attractive as an unwashed, previously infested plant.Aphidius ervi probably overcomes the reliability-detectability problem by selectively responding to herbivore-induced, volatile, semiochemical cues emitted by the first trophic level and by distinguishing between the volatiles induced by host and nonhost aphids.  相似文献   

10.
The profiles of volatile chemicals emitted by Vicia faba plants damaged by Lygus rugulipennis feeding, and by feeding plus oviposition, were shown to be quantitatively different from those released by undamaged plants. Samples of volatile chemicals collected from healthy plants, plants damaged by males as a consequence of feeding, plants damaged by females as a consequence of feeding and oviposition, plants damaged by feeding with mated males still present, and plants damaged by feeding and oviposition with gravid females still present, showed significant differences in the emission of hexyl acetate, (Z)-β-ocimene, (E)-β-ocimene, (E)-β-caryophyllene, and methyl salicylate. In particular, treatments with mated females present on plants had a significant increase in emission levels of the above compounds, possibly due to eggs laid within plant tissues or active feeding, compared with undamaged plants and plants damaged by males feeding, with or without insects still present. Furthermore, the pheromonal blend released by mated L. rugulipennis females, mainly comprising hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-4-oxo-2-hexenal, was enhanced when females were active on broad bean plants, whereas such an increase was not observed in males. Both sexes gave electroantennogram responses to green leaf volatiles from undamaged plants and to methyl salicylate and (E)-β-caryophyllene emitted by Lygus-damaged plants, suggesting that these compounds may be involved in colonization of host plants by L. rugulipennis. In addition, mated males and females were responsive to hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-4-oxo-2-hexenal released by mated females on V. faba, indicating that these substances could have a dual function as a possible aggregation pheromone in female–female communication, and as a sex pheromone in female–male communication. An erratum to this article can be found at  相似文献   

11.
The attractiveness of volatile compounds from the floral scent of Rosa, one of the most preferred plants for adult Hoplia communis, was evaluated under field conditions. The beetles were attracted to most compounds tested, but 2-phenylethanol exhibited the highest capture rate. Catches increased with increasing emissions of between 9.1 and 287.2 mg/day. Catches in white traps were significantly larger (17.4-fold) than those in green traps when both were baited with anethole, an already known attractant; however, the trap color was not significant when a more attractive lure, 2-phenylethanol, was used. The use of a single funnel trap baited with 2 g of 2-phenylethanol at a heavily infested nursery exhibited promising results for mass trapping. Approximately 90,000 beetles of both sexes, which nearly corresponds to the estimated maximum population per 1000 m2, were captured within six days.  相似文献   

12.
We investigated the olfactory response of the predatory mitePhytoseiulus persimilis to cucumber leaves infested with prey, the herbivorous spider miteTetranychus urticae. The predators responded to volatiles from young rather than old infested cucumber leaves. GC-MS analysis of the head-space of spider mite-infested, artificially damaged and undamaged cucumber plants showed that herbivore-induced plant volatiles were present among the volatiles of both old and young infested cucumber leaves. The major components of the herbivore-induced plant volatiles were (3E)-4,8-dimethyl-1,3,7-nonatriene and (E)--ocimene: these compounds are known to attract the predatory mites. In addition, we found three oximes (2-methylbutanalO-methyloxime, 3-methylbutanalO-methyloxime, and an unknown oxime) in the headspace of both old and young infested cucumber leaves. 3-MethylbutanalO-methyloxime and the unknown oxime were much more abundant in the headspace of infested old cucumber leaves. The potential adaptive value of differential attractiveness of cucumber plant leaves of different age is discussed.  相似文献   

13.
Many plant species defend themselves against herbivorous insects indirectly by producing volatiles in response to herbivory. These volatiles attract carnivorous enemies of the herbivores. Research on the model plant Arabidopsis thaliana (L.) Heynh. has contributed considerably to the unraveling of signal transduction pathways involved in direct plant defense mechanisms against pathogens. Here, we demonstrate that Arabidopsis is also a good candidate for studying signal transduction pathways involved in indirect defense mechanisms by showing that: (1) Adult females of Cotesia rubecula, a specialist parasitic wasp of Pieris rapae caterpillars, are attracted to P. rapae-infested Arabidopsis plants. (2) Arabidopsis infested by P. rapae emits volatiles from several major biosynthetic pathways, including terpenoids and green leaf volatiles. The blends from herbivore-infested and artificially damaged plants are similar. However, differences can be found with respect to a few components of the blend, such as two nitriles and the monoterpene myrcene, that were produced exclusively by caterpillar-infested plants, and methyl salicylate, that was produced in larger amounts by caterpillar-infested plants. (3) Genes from major biosynthetic pathways involved in volatile production are induced by caterpillar feeding. These include AtTPS10, encoding a terpene synthase involved in myrcene production, AtPAL1, encoding phenylalanine ammonia-lyase involved in methyl salicylate production, and AtLOX2 and AtHPL, encoding lipoxygenase and hydroperoxide lyase, respectively, both involved in the production of green leaf volatiles. AtAOS, encoding allene oxide synthase, involved in the production of jasmonic acid, also was induced by herbivory.  相似文献   

14.
Synthetic methyl salicylate (MeSA), a herbivore-induced plant volatile (HIPV), was demonstrated to be an attractant for the green lacewing, Chrysopa nigricornis, in two field experiments conducted in a Washington hop yard. Significantly greater numbers of C. nigricornis were trapped on MeSA-baited sticky cards (mean: 2.8 ± 0.4/card/week) than on unbaited cards (0.45 ± 0.15) during June–September. Cards baited with two other HIPVs, hexenyl acetate and dimethyl nonatriene, did not attract more C. nigricornis than did unbaited traps (0.30 ± 0.10, 0.44 ± 0.15, respectively). MeSA-baited Unitraps captured 1.9 ± 0.5 C. nigricornis/trap/week during July–August compared to 0.20 ± 0.20/trap/week in methyl eugenol-baited traps and 0.03 ± 0.03/trap/week in unbaited traps. The potential use of MeSA in enhancing C. nigricornis populations in Washington hop yards as an aid to conservation biological control of aphids and mites is discussed.  相似文献   

15.
Trapping experiments were carried out near Winnipeg, Canada, in the spring of 1987 and 1988 to test attraction of crucifer-feeding flea beetles to volatile glucosinolate (GS) hydrolysis products released from glass vials. Nine isothiocyanates (IC) or mustard oils and three nitriles (CN) were tested. The pattern of attraction was the same for both flea beetle species,Phyllotreta cruciferae, andP. striolata. Captures in traps baited with allyl IC increased as release rates increased from 0.04 mg/day to 40 mg/day. The lowest rate that attracted large numbers of beetles was 4 mg/day; therefore this rate was used for further experiments. More beetles were captured in traps baited with allyl IC than with any other compound. In 1988 only, four IC in addition to allyl IC were attractive to both species; namely, benzyl IC, ethyl IC, and a mixture of ethyl and methyl 4-isothiocyanatobutyrate (ICB). When captures of the two species were pooled, 3-methylthiopropyl IC, methyl ICB, andn-butyl IC were also found to be significantly attractive. Nitriles were the least attractive compounds. The high release rates of mustard oils required to attract flea beetles indicate that fields ofBrassica crops would release sufficient quantities of IC to attract flea beetles from a distance but individual or small groups of plants normally would not. It is concluded thatBrassica varietal resistance to flea beetles is unlikely to be affected by manipulating IC release.  相似文献   

16.
In response to herbivory by insects, various plants produce volatiles that attract enemies of the herbivores. Although ants are important components of natural and agro-ecosystems, the importance of herbivore-induced plant volatiles (HIPVs) as cues for ants for finding food sources have received little attention. We investigated responses of the ant Formica pratensis to volatiles emitted by uninfested and insect-infested cucumber (Cucumis sativus) and potato (Solanum tuberosum) plants. Cucumber plants were infested by the phloem-feeding aphid Aphis gossypii, the leaf chewer Mamestra brassicae or simultaneously by both insects. Potato plants were infested by either Aphis gossypii, by the leaf chewer Chrysodeixis chalcites or both. In olfactometer experiments, ants preferred volatile blends emitted by cucumber plants infested with M. brassicae caterpillars alone or combined with A. gossypii to volatiles of undamaged plants or plants damaged by A. gossypii only. No preference was recorded in choice tests between volatiles released by aphid-infested plants over undamaged plants. Volatiles emitted by potato plants infested by either C. chalcites or A. gossypii were preferred by ants over volatiles released by undamaged plants. Ants did not discriminate between potato plants infested with aphids and caterpillars over plants infested with aphids only. Plant headspace composition showed qualitative and/or quantitative differences between herbivore treatments. Multivariate analysis revealed clear separation between uninfested and infested plants and among herbivore treatments. The importance of HIPVs in indirect plant defence by ants is discussed in the context of the ecology of ant-plant interactions and possible roles of ants in pest management.  相似文献   

17.
Many plant species produce volatile organic compounds after being damaged by herbivores. The production of volatiles also may be induced by exposing plants to the plant hormone, jasmonic acid, or its volatile ester, methyl jasmonate. This study addresses the induction of the production volatile organic compounds among genetic lines of Datura wrightii. Within populations, some plants produce glandular trichomes, whereas others produce nonglandular trichomes, and trichome phenotype is controlled by a single dominant gene. Glandular trichomes not only confer resistance to some herbivorous insects, but they also inhibit many natural enemies of those herbivores. Because of the potential benefit of natural enemies that use volatile cues to find individuals of the non-glandular phenotype, it is reasonable to ask if plants of D. wrightii that differ in trichome morphology might produce different blends of volatile compounds. Volatile compounds were collected from eight genetic lines of plants that had been backcrossed for three generations. Volatiles were collected from pairs of sibling plants before and after insect damage or treatment with methyl jasmonate. Within each pair, one sib expressed glandular trichomes and the other expressed nonglandular trichomes. Overall, plants produced an array of at least 17 compounds, most of which were sesquiterpenes. Total production of volatiles increased from 3.9- to 16.2-fold among genetic lines after insect damage and from 3.6- to 32-fold in plants treated with methyl jasmonate. The most abundant compound was (E)-β-caryophyllene. This single compound comprised from 17 to 59% of the volatiles from insect-damaged plants and from 24 to 88% of the volatiles from plants treated with methyl jasmonate, depending upon genetic line. The production of (E)-β-caryophyllene by the original male parents of the eight genetic lines was significantly related to the mean production of their third-generation backcross progeny indicating that the variation in the production of (E)-β-caryophyllene was inherited. Blends did not differ qualitatively or quantitatively between sibs expressing glandular or nonglandular trichomes.  相似文献   

18.
Attraction of parasitoids to plant volatiles induced by multiple herbivory depends on the specific combinations of attacking herbivore species, especially when their feeding modes activate different defense signalling pathways as has been reported for phloem feeding aphids and tissue feeding caterpillars. We studied the effects of pre-infestation with non-host aphids (Brevicoryne brassicae) for two different time periods on the ability of two parasitoid species to discriminate between volatiles emitted by plants infested by host caterpillars alone and those emitted by plants infested with host caterpillars plus aphids. Using plants originating from three chemically distinct wild cabbage (Brassica oleracea) populations, Diadegma semiclausum switched preference for dually infested plants to preference for plants infested with Plutella xylostella hosts alone when the duration of pre-aphid infestation doubled from 7 to 14 days. Microplitis mediator, a parasitoid of Mamestra brassicae caterpillars, preferred dually-infested plants irrespective of aphid-infestation duration. Separation of the volatile blends emitted by plants infested with hosts plus aphids or with hosts only was poor, based on multivariate statistics. However, emission rates of individual compounds were often reduced in plants infested with aphids plus hosts compared to those emitted by plants infested with hosts alone. This effect depended on host caterpillar species and plant population and was little affected by aphid infestation duration. Thus, the interactive effect of aphids and hosts on plant volatile production and parasitoid attraction can be dynamic and parasitoid specific. The characteristics of the multi-component volatile blends that determine parasitoid attraction are too complex to be deduced from simple correlative statistical analyses.  相似文献   

19.
In 2002–2004, we examined the flight responses of 49 species of native and exotic bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) to traps baited with ethanol and/or (−)-α-pinene in the southeastern US. Eight field trials were conducted in mature pine stands in Alabama, Florida, Georgia, North Carolina, and South Carolina. Funnel traps baited with ethanol lures (release rate, about 0.6 g/day at 25–28°C) were attractive to ten species of ambrosia beetles (Ambrosiodmus tachygraphus, Anisandrus sayi, Dryoxylon onoharaensum, Monarthrum mali, Xyleborinus saxesenii, Xyleborus affinis, Xyleborus ferrugineus, Xylosandrus compactus, Xylosandrus crassiusculus, and Xylosandrus germanus) and two species of bark beetles (Cryptocarenus heveae and Hypothenemus sp.). Traps baited with (−)-α-pinene lures (release rate, 2–6 g/day at 25–28°C) were attractive to five bark beetle species (Dendroctonus terebrans, Hylastes porculus, Hylastes salebrosus, Hylastes tenuis, and Ips grandicollis) and one platypodid ambrosia beetle species (Myoplatypus flavicornis). Ethanol enhanced responses of some species (Xyleborus pubescens, H. porculus, H. salebrosus, H. tenuis, and Pityophthorus cariniceps) to traps baited with (−)-α-pinene in some locations. (−)-α-Pinene interrupted the response of some ambrosia beetle species to traps baited with ethanol, but only the response of D. onoharaensum was interrupted consistently at most locations. Of 23 species of ambrosia beetles captured in our field trials, nine were exotic and accounted for 70–97% of total catches of ambrosia beetles. Our results provide support for the continued use of separate traps baited with ethanol alone and ethanol with (−)-α-pinene to detect and monitor common bark and ambrosia beetles from the southeastern region of the US.  相似文献   

20.
Cotton plants under herbivore attack release volatile semiochemicals that attract natural enemies of the herbivores to the damaged plant. The volatiles released in response to herbivory are not only released from the damaged leaves but from the entire cotton plant. We found that cotton plants that released myrcene, (Z)-3-hexenyl acetate, (E)--ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, (E)--farnesene, and (E, E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene systemically from undamaged leaves of caterpillar damaged plants were attractive to the generalist parasitoid Cotesia marginiventris and the specialist parasitoid Microplitis croceipes. Plants from which the caterpillar damaged leaves were removed and that released those compounds systemically were significantly preferred over undamaged control plants in two-choice experiments in a flight tunnel. Artificially damaged cotton plants that released green leafy volatiles and constitutive terpenoids were less attractive for M. croceipes and C. marginiventris. Only C. marginiventris preferred artificially damaged plants over undamaged control plants, whereas M. croceipes showed no preference. The apparent lack of specificity of systemically released compounds in response to different herbivores feeding on the lower leaves is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号