首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress and strain field of a propagating fatigue crack and the resulting crack opening and closing behavior were analysed. It was found that a propagating fatigue crack was closed at tensile external loads due to the cyclically induced residual stresses. Strain range value Δ?y in the vicinity of the crack tip was found to be closely related with the effective stress intensity factor range ΔKeff which was determined on the basts of the analytical crack opening and closing behavior at its tip. Application of this analysis to the non-propagating fatigue crack problem and the fatigue crack propagation problems under variable stress amplitude conditions revealed that both Δ?y and ΔKeff were essential parameters governing fatigue crack growth rate.  相似文献   

2.
Linear elastic fracture mechanics relates fatigue crack growth with the stress intensity factor at the crack tip. Presence of residual deformations at the tip of a fatigue crack reduces the crack tip stress intensification such that effective stress intensity range ΔKe = U · ΔK. In this paper use of eddy current technique is exhibited to find the values of test value of effective stress range factor Utest. A reasonable comparison between computed and experimental results of U1 and Utest on two Al alloys 6061-T6 and 6063-T6 has recommended the Eddy Current Technology for finding out the values of crack opening stress level under given loading conditions.  相似文献   

3.
Crack closure experiments were performed on 6063-T6 Al-alloy using a COD-gauge for various load ranges and stress ratios. Experimental results show that for a given stress ratio, R, the crack closure load goes on decreasing as crack length increases (or Kmax increases) and reaches even below minimum load level at higher values of stress ratios. On the basis of these experimental results, a model for effective stress intensity range ratio U, which is found to be a function of stress ratio R and kmax, is developed.  相似文献   

4.
From previous investigations of the mechanisms of both fracture and fatigue crack propagation, the static fracture model proposed by Lal and Weiss may be thought as reasonable for describing fatigue crack propagation in metals at both low and intermediate stress intensity factor ranges ΔK. Recent progress in fatigue crack propagation indicates that it is not only possible, but also necessary, to modify this static fracture model. Based on the modified static fracture model, the effective stress intensity factor range ΔKeff, which is defined as the difference between ΔK and the fatigue crack propagation threshold value Δth, is taken as the governing parameter for fatigue crack propagation. Utilising the estimates of the theoretical strengths of metals employed in industry, a new expression for fatigue crack propagation, which may be predicted from the tensile properties of the metals, has been derived. The correlation between the fatigue crack propagation rate and the tensile properties is thus revealed. The new expression fits the test results of fatigue crack propagation of steels below 10?3 mm/cycle and indicates well the effect of stress ratio on the fatigue crack propagation rate.  相似文献   

5.
Crack propagation rate, da/dN, and crack tip closure stress, σcc, in part-through crack fatigue specimens of aluminum alloys are drastically affected by gaseous environments. The present studies indicate that the crack closure reflects the influence of the environment on the plastic deformation at the crack tip, and, therefore, on the crack propagation rates. Postulating that da/dN is mainly determined by ΔKeff ∝ (σmaxcc) (instead of ΔK ∝ (σmaxmin), as is done traditionally) leads to the relationship da/dN = A(ΔKeff)n in which A and n are virtually independent of the gaseous environment. The exponents are n ≈ 3.3 for Al 7075 T651 and n ≈ 3.1 for Al 2024 T351, respectively.  相似文献   

6.
Fatigue crack propagation at low stress intensities has been studied in two low alloy steels in a variety of environments with particular emphasis being placed on the influence of stress ratio and strength level. It was found that fatigue crack growth rates are lower and threshold stress intensities (ΔK0) are higher in vacuum than in humid, laboratory air but, in dry gaseous environments (argon, hydrogen and air) and at low stress ratio (R ~ 0.1), crack growth rates are faster and ΔK0 values are lower than in laboratory air. However, the influence of stress ratio is considerably greater in laboratory air than in dry gaseous environments with the result that, at high stress ratio (R ~ 0.8) ΔK0 values are similar in all environments examined. Increasing material strength level resulted in higher, near-threshold crack growth rates and a reduction in ΔK0 in both dry and humid air environments. The results are discussed in terms of the influence of crack closure and environmental effects on fatigue crack growth behaviour. The importance of corrosion debris produced in fatigue cracks at low stress intensities is also discussed.  相似文献   

7.
Crack closure phenomenon in fatigue was studied by using a Ti-6Al-4V titanium alloy. The occurrence of crack closure was directly measured by an electrical potential method, and indirectly by load-strain measurement. The experimental results showed that the onset of crack closure depends on both the stress ratio, R, and the maximum stress intensity factor, Kmax. Crack closure was not observed for stress ratio, R, greater than 0.3 in this alloy.A two-dimensional elastic model was used to explain the behavior of the recorded load-strain curves. Closure force was estimated by using this model. Based on the estimated closure force, the crack opening displacement was calculated. This result showed that onset of crack closure detected by electrical-potential measurement and crack-opening-displacement measurement is the same.The implications of crack closure on fatigue crack are considered. The experimental results show that crack closure cannot fully account for the effect of stress ratio, R, on crack growth, and that it cannot be regarded as the sole cause for delay.  相似文献   

8.
A study has been made of the influence of load ratio R on fatigue crack propagation behavior and specifically on the value of the fatigue crack growth threshold, ΔK0, in a bainitic 2.25 Cr-1Mo pressure vessel steel tested at 50 Hz in aqueous, and moist and dry gaseous environments. Data are obtained for crack growth in a distilled water environment and are compared to previously published results in air and hydrogen. It is found that in distilled water the dependence of thresholds ΔK0 values on R is far less marked than in moist air and dry hydrogen atmospheres where ΔK0 values decrease sharply with increasing R. Furthermore, whereas in air and hydrogen, the threshold condition is characterized by a constant maximum stress intensity at low load ratios, and a constant alternating stress intensity at high load ratios, no such behavior is observed in water. Based on extensive measurements of crack face oxidation products using scanning Auger speetroscopy and on previous crack closure measurements using ultrasonics techniques, the role of load ratio in influencing near-threshold fatigue behavior is ascribed to mechanisms of crack closure specifically plasticity-induced closure and closure arising from crack face oxide debris. The implications of such plasticity-induced and oxide-induced closure to the load ratio-dependence of near-threshold fatigue behavior in various environments are discussed in detail.  相似文献   

9.
A model was derived to predict the true threshold value for fatigue crack growth in the absence of crack closure. The model, based only on the tensile and cyclic properties of the material, was successfully verified against a set of experimental data on medium and high strength steels and one aluminium alloy. Good agreement with experimental results was also obtained for Region I of the da/dN vs ΔK curve using a fatigue crack growth rate equation based on the same model.Fatigue crack growth data obtained from the medium strength steel CK45 in the normalized state and two heat-treated conditions were analysed. Good data correlation was shown using a previously developed normalizing parameter, φ = (ΔK2?ΔK2th)/(K2c?K2max), in the entire range of fatigue crack growth rates and for stress ratios ranging from 0.1 to 0.8.  相似文献   

10.
Crack growth data for 2024-T3 sheet material were analysed with different formulas for ΔKeff as a function fo the stress ratio R. The data covered R values from ?1.0 to 0.54. A good correlation was obtained for ΔKeff/ΔK = 0.55 + 0.33R + 0.12R2 The relation between log da/dn and log ΔKeff was non-linear for high crack rates (> 1 μm/c).  相似文献   

11.
In a prior study [1], the fatigue crack propagation (FCP) response of a cast and an extruded aluminum alloy was examined as a function of mean stress and specimen orientation while crack closure data were collected. In this work, extensive electron fractographic studies were conducted on the previously generated fatigue fracture surfaces using both scanning and transmission electron microscopy. The threshold micromorphology revealed crisp, cleavage-like facets. Striation spacing measurements at intermediate and high ΔK levels were obtained to determine microscopic growth rates; these measurements were seen to vary with R ratio and were best correlated with ΔKEFF rather than ΔKAPP. Slope changes in the da/da-ΔK plots were identified and attempts made to establish correlations between the associated plastic zone sizes and microstructural dimensions. Of particular note, a stage IIa to IIb transition in the extruded material was found to correspond to a micromechanism change from faceted growth to striated growth when the reversed plastic zone size was similar to the subgrain dimension.  相似文献   

12.
The cyclic stress intensity threshold (ΔKTH) below which cracks will not propagate varies with length for short cracks. A model is proposed which relates ΔKTH to the crack closure stress arising from fracture surface roughness. This is used to predict a variation in ΔKTH with crack length for surface cracks in Ti 6Al-2Sn-4Zn-6Mo alloy, based upon measured values of crack opening displacement arising from roughness. The predicted variation in ΔKTH with crack length is found to be similar to that obtained from the empirical model of ΔKTH proposed by El Haddad et al.[5]. The application of the new model to estimate the value of crack closure stress arising from crack tip plasticity for short surface cracks is also discussed.  相似文献   

13.
Fatigue crack propagation from a crack inclined to the cyclic tensile axis   总被引:1,自引:0,他引:1  
Cyclic stresses with stress ratio R = 0.65 were applied to sheet specimens of aluminium which have an initial crack inclined to the tensile axis at angles of 30°, 45°, 72° or 90°. The threshold condition for the non-propagation of the initial crack was found to be given by a quadratic form of the ranges of the stress intensity factors of modes I and II. The direction of fatigue crack extension from the inclined crack was roughly perpendicular to the tensile axis at stress ranges just above the threshold value for non-propagation. On the other hand, at stress ranges 1.6 times higher than the threshold values the crack grew in the direction of the initial crack. The rate of crack growth in the initial crack direction was found to be expressed by the following function of stress intensity factor ranges of mode I, K1, and mode II, K2: dcdN = C(Keff)sum, where Keff = [K14 + 8K24]14. This law was derived on the basis of the fatigue crack propagation model proposed by Weertman.  相似文献   

14.
The method of ultrasonic fatigue finds increasing interest in materials science. Especially, fatigue crack growth rates near the threshold stress intensity range, ΔK0, can be determined with this method in reasonable times providing no frequency and corrosion effects exist. But for an accurate application of this technique it is necessary to improve the testing systems and also the determination of the dynamic cyclic stress intensity range, ΔK. In this paper, fatigue crack growth experiments at ultrasonic frequencies with different mean stresses and also the calculation of the dynamic stress intensity range with finite elements are treated. On this basis fatigue crack growth curves at room temperature of the alloys Hastelloy X and IN 800 were measured and compared with results obtained at low frequencies. No significant influence of frequency could be found in these materials.  相似文献   

15.
The fatigue crack propagation characteristics of several rotor and wheel materials that are commonly used in rotating components of steam turbines were investigated. Particular emphasis was placed on the behaviour at near-threshold growth rates, ie below 10?5 mm/cycle, approaching the fatigue-crack propagation threshold, ΔKth. The lifetimes of the cracks of interest lie mostly in this region, and it is also the region where few data are available.The effects of load ratio on the fatigue crack growth rates were examined, as well as the tensile, Charpy V-notch and fracture toughness properties of the rotor and wheel materials. The relationship between fatigue crack propagation behaviour and fractographic features was examined. Fatigue crack growth rate data, da/dN vs stress intesity range ΔK, were fitted with a four parameter Weibull survivorship function. This curve fitting can be used for life estimation and establishment of ΔKth. The results show that load ratio and microstructure play a role in determining the fatigue crack threshold and fatigue crack growth behaviour.  相似文献   

16.
17.
The fatigue crack propagation (FCP) response of a cast and extruded aluminum alloy was examined as a function of mean stress and specimen orientation. The extruded alloy was tested in both the longitudinal and transverse orientation and no difference in FCP response was noted. FCP tests were conducted at R ratios of 0.1, 0.5, 0.65 and 0.8. In the threshold regime, it was seen that as R ratio increased, ΔKTH decreased. In addition, ΔKTH values determined for the cast alloy were superior to those determined for the extruded alloy at all R ratios examined. The threshold regime was also shown to be KMAX rather than ΔK dependent. At intermediate ΔK levels, a mean stress effect was seen for both alloys at R ratios less than 0.5. Crack closure was monitored during testing so that ΔKEFF values could be determined. ΔKEFF was seen to explain mean stress effects at intermediate ΔK levels.  相似文献   

18.
A review of the published literature on fatigue crack growth suggests that power-law growth in Ti-6A1-4V is sensitive to microstnictural changes which result in variations in the fatigue mechanism. Microstnictures which promote secondary cracking along α/β interfaces display slow growth rates while microstructures which promote dimpled rupture display fast growth rates. Examples of similar effects are found in other alloy systems.Typically, the power-law growth are found in other alloy systems. It is also suggested that the power-law regime begins at ΔK ~- 13 MNm?case32, coinciding with the lower limit of striation formation on the fracture surface. The upper limit occurs at about Kmax = 1/2Kc. At higher growth rates, the Forman equation appears to be adequate.The normalized stress intensity factor, ΔK/E, required to produce a given growth rate in Ti-6A1-4V is on the order of that for other Ti-base alloys, ferritic steels, martensitic steels and aluminum alloys. Austenitic steels, which deform by planar slip are much more resistant to crack growth over much of the stress intensity range normally encountered.  相似文献   

19.
Fracture mechanics approach is applied to fatigue crack initiation at the tips of deep, blunt notches including those with very small notch-tip radius. The theoretical relations between the stress intensity range ΔKρ and the notch-tip radius ρ for a fixed life for crack initiation were derived based on the models of dislocation-dipole accumulation and blocked slip-band. Those are approximated by a simpler equation: ΔKρΔKo = (1 + ρ/ρ0)12 where ΔK0 and ρ0 are material constants which are related to the fatigue strength of smooth specimens Δρ0 as Δρ0 = 2ΔK0(πρ0)12. The results of experiments done with bluntly notched compact tension specimens of a structural low-carbon steel agree with the above relation between ΔKgrΔKo and ρ/ρo. The method to predict ΔKo, ρo and Δρo from the fatigue data of cracked and smooth specimens is proposed.  相似文献   

20.
A new theoretical model, based on dislocation mechanics, is used here to predict the residual stress distribution resulting from fatique cracking. Photoelastic results which corroborate the analysis perform the basis for some initial assumptions. The associated phenomena of fatigue crack closure is emerged as a by-product. An expression for the residual stress intensity factor (KIR) is derived along with experimental validation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号