首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An 80-MeV/c negative muon beam from the Alternating Gradient Synchrotron at Brookhaven National Laboratory was used to investigate the stopping of muons inside Pd, Ti, and Y targets saturated with deuterium. Neutron emission from the targets was measured with an array of3He detectors, and in some runs, the temperature of the target was monitored as a function of time, with and without a flux of muons on the target. The neutron rates were also measured for Pd cathodes in an active electrochemical cell similar in design to those used in so-called “cold fusion” experiments, and the electrolyte solution was analyzed for excess tritium. No evidence was found for muon-catalyzed fusion at rates consistent with those claimed in “cold fusion” experiments. Neutron production from catalyzed fusion due to the presence of deuterium in palladium deuteride, PdD0.7, exposed to muons was determined to be 0.0±0.03 (stat.) ±0.25 (syst.) neutrons per stopped muon.  相似文献   

2.
The two major schemes for a fixed-target muon production system in muon-catalyzed fusion reactors are analyzed and compared using Monte Carlo simulation techniques. Starting with a careful optimization of the pion production target we next consider the complete system where pion conversion losses and muon losses in the target and the pressure vessel are taken into account. A simple but realistic design for the pion-muon converter is introduced. Problems and inefficiencies are identified to provide a basis for future inventions.  相似文献   

3.
The basic fusion driver requirements of a toroidal materials production reactor are considered. The tokamak, stellarator, bumpy torus, and reversed-field pinch are compared with regard to their demonstrated performance, probable near-term development, and potential advantages and disadvantages if used as reactors for materials production. Of the candidate fusion drivers, the tokamak is determined to be the most viable for a near-term production reactor. Four tokamak reactor concepts (TORFA/FED-R, AFTR/ZEPHYR, Riggatron, and Superconducting Coil) of approximately 500-MW fusion power are compared with regard to their demands on plasma performance, required fusion technology development, and blanket configuration characteristics. Because of its relatively moderate requirements on fusion plasma physics and technology development, as well as its superior configuration of production blankets, the TORFA/FED-R type of reactor operating with a fusion power gain of about 3 is found to be the most suitable tokamak candidate for implementation as a near-term production reactor.This paper represents work carried out from 1980 to 1982 and was in draft form in 1982. It was received for publication with only minor editing from its 1982 version (except for Tables II and III and Fig. 1), explaining the fact that some of the material is dated.  相似文献   

4.
A novel surface muon capture system with a large acceptance was proposed based on the China spallation neutron source(CSNS).This system was designed using a superconducting solenoid where a long graphite target was put inside it.Firstly,the spin polarization evolution was studied in a constant uniform magnetic field.As the magnetic field can interact with the spin of the surface muon,both the spin polarization and production rate of the surface muons collected by the new capture system were calculated by the G4beamline.Simulation results showed that the surface muons could still keep a high spin polarization([90%)with different magnetic fields(0–10 T),and the larger magnetic field is,the more surface muons can be captured.Finally,the proton phase space,Courant–Snyder parameters,and intensities of surface muons of different beam fractions were given with magnetic fields of 0 and 5T.The solenoid capture system can focus proton and surface muon beams and collect p?and l?particles.It can also provide an intense energetic positron source.  相似文献   

5.
The tandem mirror and tokamak are being considered as candidate fusion drivers for a materials production reactor that could be implemented in the 1990s. This report considers, in detail, the required performance characteristics of the fusion plasma and the major technological subsystems for each fusion driver. These performance characteristics are compared with the present state of the art, corresponding development needs are identified, and technology program requirements, in addition to those now being supported by the Department of Energy, are pointed out. The tandem mirror and tokamak fusion drivers are also compared with regard to their required advancements in plasma performance and technology development.This paper represents work carried out from 1980 to 1982 and was in draft form in 1982. It was received for publication with only minor editing of its 1982 version, explaining the fact that some of the material is dated.  相似文献   

6.
Study of Nuclear Physics for Nuclear Fusion   总被引:1,自引:0,他引:1  
Based on the concept of damp matching [1] and the famous d + t fusion data, a conventional quantum mechanics calculation shows that the plasma fusion, muon-catalyzed fusion, and the low-energy nuclear reaction are essentially same in the sense of resonant tunneling through the Coulomb barrier. The good agreement between theory and experimental data justifies the selectivity in resonant tunneling, which implies the possibility of having fusion energy with no strong neutron and gamma radiation.  相似文献   

7.
A magnetic fusion reactor can produce 10.8 kg of tritium at a fusion power of only 400 MW —an order of magnitude lower power than that of a fission production reactor. Alternatively, the same fusion reactor can produce 995 kg of plutonium. Either a tokamak or a tandem mirror production plant can be used for this purpose; the cost is estimated at about $1.4 billion (1982 dollars) in either case. (The direct costs are estimated at $1.1 billion.) The production cost is calculated to be $22,000/g for tritium and $260/g for plutonium of quite high purity (1%240Pu). Because of the lack of demonstrated technology, such a plant could not be constructed today without significant risk. However, good progress is being made in fusion technology and, although success in magnetic fusion science and engineering is hard to predict with assurance, it seems possible that the physics basis and much of the needed technology could be demonstrated in facilities now under construction. Most of the remaining technology could be demonstrated in the early 1990s in a fusion test reactor of a few tens of megawatts. If the Magnetic Fusion Energy Program constructs a fusion test reactor of approximately 400 MW of fusion power as a next step in fusion power development, such a facility could be used later as a production reactor in a spinoff application. A construction decision in the late 1980s could result in an operating production reactor in the late 1990s. A magnetic fusion production reactor (MFPR) has four potential advantages over a fission production reactor: (1) no fissile material input is needed; (2) no fissioning exists in the tritium mode and very low fissioning exists in the plutonium mode thus avoiding the meltdown hazard; (3) the cost will probably be lower because of the smaller thermal power required; (4) and no reprocessing plant is needed in the tritium mode. The MFPR also has two disadvantages: (1) it will be more costly to operate because it consumes rather than sells electricity, and (2) there is a risk of not meeting the design goals.This paper represents work carried out from 1980 to 1982 and was in draft form in 1982. It was received for publication with only minor editing of its 1982 version, explaining the fact that some of the material is dated.  相似文献   

8.
The mechanical aspects of tandem mirror and tokamak concepts for the tritium production mission are compared and a proposed breeding blanket configuration for each type of reactor is presented in detail, along with a design outline of the complete fusion reactor system. In both cases, the reactor design is developed sufficiently to permit preliminary cost estimates of all components. A qualitative comparison is drawn between both concepts from the view of mechanical design and serviceability, and suggestions are made for technology proof tests on unique mechanical features. Detailed cost breakdowns indicate less than 10% difference in the overall costs of the two reactors.This paper represents Work carried out from 1980 to 1982 and was in draft form in 1982. It was received for publication with only minor editing of its 1982 version, explaining the fact that some of the material is dated.  相似文献   

9.
The magnetic fusion reactor for the production of nuclear weapon materials, based on a tandem mirror design, is estimated to have a capital cost of $1.5 billion and to produce 10 kg of tritium/year for $22,000/g or 940 kg/year of plutonium in the plutonium mode for $250/g plus heavy metal processing. A tokamak-based design is estimated to cost $1.5 billion and to produce 10 kg of tritium/year for $29 thousand/g. For comparison, a commercially sized tandern mirror fusion breeder selling excess electricity and fissile material to commercial markets is estimated to cost $3.6 billion and to produce tritium for $2.6 thousand/g and plutonium for $34/g plus heavy metal processing.This paper represents work carried out from 1980 to 1982 and was in draft form in 1982. It was received for publication with only minor editing of its 1982 version, explaining the fact that some of the material is dated.  相似文献   

10.
Estimates of the expected performance of beryllium and several aluminum alloy structural components of the breeding blanket of a magnetic fusion production reactor are made based on the known behavior and properties of these materials in fission reactor applications. Comparisons of the irradiation damage effects resulting from the fission reactor neutron spectra and the fusion reactor blanket spectra indicate that beryllium will perform well in the breeding blanket for at least one year and the aluminum alloy 5052 will retain structural integrity for about 5 years.This paper represents work carried out from 1980 to 1982 and was in draft form in 1982. It was received for publication with only minor editing of its 1982 version, explaining the fact that some of the material is dated.  相似文献   

11.
Tandem-mirror- and tokamak-based magnetic fusion production reactors are predicted to have tritium breeding ratios of 1.67 and 1.49, respectively. The latter value replaces one (1.56) that is used elsewhere in the sequence of papers in this issue. Blanket energy multiplication for both is predicted to be about 1.3. With the tandem mirror operating in the plutonium production mode, the net plutonium-plus-tritiurn breeding ratio is 1.74. Blanket energy multiplication for the plutonium mode is predicted to be 2.4 at a plutonium-uranium ratio of 0.7% and a uranium volume fraction of 3%.This paper represents work carried out from 1980 to 1982 and was in draft form in 1982. It was received for publication with only minor editing of its 1982 version, explaining the fact that some of the material is dated.  相似文献   

12.
With three-dimensional modeling and neutron transport analysis, a tokamak with a low technology blanket containing beryllium was found to have a tritium breeding ratio of 1.54 tritons per DT neutron. Such a device would have a net tritium production capability of 9.1 kg/yr from 450 MW of fusion power at 70% capacity factor.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract W-7405-Eng-48.  相似文献   

13.
数据融合旨在将来自多传感器或多源的信息进行协同分析,通过一系列的融合处理,从而得出更为准确可信的结论。概述了数据融合的研究近况,从系统的角度提出了数据融合的定义,初步探讨了其理论模型。在介绍禁核试核查背景的基础上,给出了禁核试核查数据融合的基本概念,理论框架及研究内容。  相似文献   

14.
The technical feasibility of allocating reliability to reactor systems, subsystems, components, and structures is discussed in this paper. The basic premise for this analysis is that a set of objective functions or safety variables has been defined on a global basis for a class of nuclear power plants. The decision variables, which represent the system, subsystem, component, and structural reliabilities are related to the global objective functions by a risk model obtained from an existing plant-specific probabilistic risk assessment (PRA). A multiobjective optimization technique is employed to obtain the set of decision variables which optimize (minimize) all of the objective functions. A cost function is introduced (and incorporated in the optimization scheme) which measures the cost of increasing reliability. Illustrative calculations were performed for a boiling water reactor with an existing PRA.  相似文献   

15.
Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or burning of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets.Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.  相似文献   

16.
Main directions of work on experimental fusion reactors safety assurance in Russia are given. Work on safety includes: the elaboration of the main criteria and principles of safety assurance, the development of the first priority standards in safety on the basis of the fission experience and international safety documents requirements, fusion reactor safety analysis, and work to provide a base for the standards development and for the safety analysis activity. The results of some work on fusion safety are presented. They include: assessments of safety and reliability of Liquid Metal Cooling System draft design, evaluations of the buildings and equipment response on external dynamic influences, and analysis of radiological situation in th environment as a result of tritium-containing dust release.  相似文献   

17.
The 1986 ERAB Fusion Panel finds that fusion energy continues to be an attractive energy source with great potential for the future, and that the magnetic fusion program continues to make substantial technical progress. In addition, fusion research advances plasma physics, a sophisticated and useful branch of applied science, as well as technologies important to industry and defense. These factors fully justify the substantial expenditures by the Department of Energy in fusion research and development (R&D). The Panel endorses the overall program direction, strategy, and plans, and recognizes the importance and timeliness of proceeding with a burning plasma experiment, such as the proposed Compact Ignition Tokamak (CIT) experiment.Presented to the Magnetic Fusion Advisory Committee (La Jolla, California, December 4, 1986)  相似文献   

18.
分析了金属电极间的冷聚变现象,采用量子力学方法,导出在微观外场作用下反应核的穿透几率以及相应的核聚变截面公式,阐释了在核聚变中也存在共振隧穿现象,并给出了冷聚变实验结果的半定量解释,从而提出了一种新的聚变机理。  相似文献   

19.
20.
Fusion is recognized as a sufficiently abundant and environmentally attractive energy source to sustain industrial society in the 21st century and beyond. This paper outlines a strategic framework for the U.S. magnetic fusion program that builds substantially on the high-quality research and the strong scientific and technological basis that has been established during the past two decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号