首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The in-plane flow characteristics of both water and air in needled, nonwoven geotextiles have been evaluated in this study. Transmissivity (equal to permeability times fabric thickness) versus applied normal stress on the fabric has been measured in a radial flow device for different fabrics and for different thicknesses of a given fabric. The transmissivity response in each case was seen to decrease with increasing stress until a residual value was reached. In none of the cases did the fabric compress to the point where flow was completely shut off, even though stress levels of 2500 psf were applied. In turn, the calculated geotextile permeability varied from a fine gravel to a medium sized sand.Planar air flow in geotextiles has been found to be in excess of two orders of magnitude greater than water flow under comparable conditions. Air flow through partially and fully saturated fabrics is shown to be of little practical interest since the air easily moves around the water in the fabric voids or displaces it entirely.The need for transmissivity test standardization for all types of geotextiles and geotextile composite systems is expressed.  相似文献   

2.
This paper focuses on the impact resistance of geotextiles when subjected to impact loadings induced by dropping of stones. Such scenarios occur when geotextiles are used as a protective measure for fine granular material where is prone to be washed away. Usually, these geotextiles are restrained by placement of stones on top of them. A laboratory testing program is performed to expose a woven geotextile under dropping of a concrete block with various dropping energies and geometries. The induced damage on the geotextiles is inspected after the drop. Results indicate that as the drop energy increases, not only the possibility of puncturing of geotextiles increases but, in case of puncturing, the punctured area of geotextile expands as well. In addition, it is found that the geometry of the concrete block, where it collides on the geotextile, plays an important role on the survivability of geotextiles. In addition, PIV analysis has been performed to better understand the deformation pattern of the geotextile under impact loading. Based on the PIV results a simple scheme is suggested to estimate the drop energy threshold that the geotextile can survive under certain block geometry.  相似文献   

3.
Woven geotextiles have been widely used in soil infrastructures for the reinforcement purpose. The hydraulic properties of a woven geotextile are not major reinforcement design parameters and the water retention capability of a woven geotextile is often ignored. The traditional testing techniques were designed for soils or nonwoven geotextiles, but not for woven geotextiles. Nowadays, a new type of woven geotextile with wicking fibers was developed which could be used for both drainage and reinforcement purposes. However, there are no proper testing techniques to determine the full-range water retention curve (WRC) for a woven geotextile, let alone for the wicking geotextile.This paper aimed at proposing a proper testing technique to determining the full-range WRC for the wicking geotextile and to compare the water retention capability of wicking and non-wicking geotextiles. Firstly, the traditional testing techniques were re-examined to check the suitability for characterizing the WRCs of woven geotextiles whose pore size distributions were anisotropic. Secondly, a proper testing technique was proposed and the WRCs of different types of woven geotextiles were determined. Thirdly, the WRCs of wicking and non-wicking geotextiles were compared to demonstrate the advantages of the wicking geotextile to hold and transport water under unsaturated conditions. Finally, the effect of wicking fiber on the water retention capability of the wicking geotextile was quantified.  相似文献   

4.
深圳河反滤土工布试验研究   总被引:3,自引:1,他引:2       下载免费PDF全文
对深圳河治理工程边坡防护反滤运行期的土工布进行了综合试验研究 ,分析了土工布长期运行过程中的渗透性、保土性和淤堵性能 ,从强度损失角度分析了土工布长期运行的强度衰减情况 ,并对土工布的耐久性进行了试验分析。由试验知 ,土工布渗透系数降低约 10 0倍左右 ,而土工布强度降低了 5 0 %左右 ,强度衰减速率小于 0 .2 6% /月。试验表明 ,土工布已进入稳定渗透期和强度的稳定衰减期 ,土工布满足防护反滤的要求  相似文献   

5.
This paper presents the results of an experimental study of various geotextiles used to filter clayey sludge. The use of geotextiles to filter clayey sludge or suspensions of fine particles in water is more complex than that for filtering suspensions of granular soils. In practice, such applications generally use flocculants to postpone the formation of a low-permeability filter cake. The objective of the present study, which does not use flocculants, is to determine how geotextile characteristics affect the capacity of the geotextile to filter clayey sludge. Three key questions are addressed: (1) What are the main differences between vertical and horizontal filtration? (2) How do geotextile characteristics (nature, opening size, permeability, etc.) affect its capacity to filter clayey sludge (3) How do clayey sludge characteristics (i.e., grain size distribution and concentration)? and the type of flow (i.e., constant head or constant flow) affect the filtering capacity of geotextiles? To evaluate the capacity of a geotextile to filter clayey sludge, we propose three relevant criteria and analyse two filtration phases induced by different cake-formation processes (controlled by the geotextile and controlled by the filter cake). To determine the main differences between vertical and horizontal filtration, the settling of fines in the testing device and its influence on the results are analysed and discussed. This study shows that, for the various clayey sludge tested, the geotextiles (needle-punched nonwoven and thermally bonded nonwoven) with the smallest opening sizes (O90?≤?60?μm) give the most promising results for filtering fines without the use of flocculants. Of these geotextiles, the thermally bonded nonwoven structure seems to offer the best filtration performance for the largest range of fines concentration in the sludge.  相似文献   

6.
A laboratory study was undertaken to assess the gas transmissivity of two needle-punched non-woven geotextiles subjected to partial wetting. Each geotextile was subjected to 10 and 20 kPa effective stress, respectively. For the geotextiles and conditions examined, it was found that the gas transmissivity decreased as the effective stresses and moisture content increased. More importantly, it was observed that the thicker geotextile achieved a higher transmissivity than the lighter geotextile. This is most likely due to the lower porosity and the large number of needle holes present in the thicker geotextile. The loss in transmissivity was found to be more pronounced at moisture content lower than a threshold value (w≈160%), the variation of the transmissivity loss beyond the threshold value was found to be insignificant. The present investigation has shown that there is a need to include a wettability factor if the geotextile is to be used as a gas drain. Reductions factors are proposed to account for the wettability parameter.  相似文献   

7.
In this study, a two-dimensional consolidation solution for geotextile tubes filled with fine-grained material was presented. The solution is based on a combination of various methods that were modified or extended to take into account the change in tube shape, the nonlinear interaction between the soil and geotextile, and the water content distribution of the tube during consolidation. Using the proposed solution, the effect of various necessary input parameters was investigated. Thereafter, numerous dewatering and consolidation properties of various combinations of geotextiles and fill materials were obtained from several tests such as the half cross-section test, hanging bag tests, and geotextile tube demonstration test. Results of the study have shown that the method presented in this study can well-represent the consolidation behavior of geotextile tubes filled with fine-grained material.  相似文献   

8.
9.
Nonwoven geotextiles have been used as filters in geotechnical and geoenvironmental works for half a century. They are easy to install and can be specified to meet the requirements for proper filter performance. There are situations where a geotextile filter may be subjected to tensile loads, which may alter relevant filter properties, such as its filtration opening size. Examples of such situations are silty fence applications, geotextile separators, geotextile tubes and geotextiles under embankments on soft soils. This paper investigates the effects of tensile strains on geotextile pore dimensions. A special equipment and testing technique allowed tests to be carried out on geotextile specimens subjected to tension and confinement. The results obtained showed that the variation in filtration opening size depends on the type of strain state the geotextile is subjected, under which the geotextile pore diameter may remain rather constant or increase significantly. However, confinement reduces the geotextile filtration opening size independent on the strain mobilised. An upper bound for the filtration opening size of strained nonwoven geotextiles is introduced and was satisfactory for the geotextile products tested.  相似文献   

10.
Current design regulations preclude the usage of cohesive backfills in reinforced soil structures regardless of whether the reinforcement is metallic or polymer fabric. The main reasons for this are: firstly, cohesive materials can be expansive; and secondly, the maximum bond strength between the reinforcement and the clay is normally not expected to be more than the undrained strength of the clay, giving no advantage. However, low-plasticity (so-called semi-cohesive) soils are not expansive and could be used in reinforced soil structures provided the reinforcement can give an increase in strength. A large number of shearbox and pull-out tests have been carried out to investigate which are the major factors governing the clay-geotextile interaction in both undrained and drained conditions. Woven and non-woven fabrics and meshes were used in the tests. The results have shown that the shearing strength of clay can be increased by properly selected geotextile reinforcement in both undrained (short-term) and drained (long-term) loading. It has been also shown that the pull-out resistance of the geotextile reinforcement is essentially proportional to the normal stress and for high transmissivity geotextiles or for geogrids it is limited by the tensile strength and relaxation of the material. The low transmissivity however is also a factor obstructing the development of high pull-out resistance in undrained conditions. The results indicate that geotextile reinforced cohesive backfill might be a viable alternative in reinforced soil structures if good-quality granular backfill material is not readily available.  相似文献   

11.
It should be noted that the drainage conditions and mechanisms are somewhat different when geotextiles are used as back fill material behind retaining walls. One of the major differences is that the soil installed by the geotextile may not necessaroly be saturated. Generally, the drainage performance of geotextiles can be evaluated by examining combined behavior of geotextiles, soil particles and water. However, in addition to the above materials, in investigating the drainage performance of geotextiles as back fill material behind retaining walls, the effect of air should be taken into account. Therefore, this study has concentrated on investigating the effect of drainage performance of an initially dry geotextile. A further long-term test was carried out primarily to examine the mechanism and development of self-induced filters, which is believed to determine the drainage performance of the geotextile.  相似文献   

12.
A modified hydrodynamic sieving technique in which the geotextile is subjected to a tensile load is described. This load may be either uni-axial or bi-axial. To date tests have been conducted on two different woven slit-film polypropylene geotextiles and the results illustrate a marked change in the filtration opening size of the geotextiles as the tensile load is increased. The opening size of the thicker geotextile decreased with increasing biaxial load, whereas the opposite occurred for the thinner of the two geotextiles. The geotextiles were loaded up to only about 10% of their minimum ultimate tensile strength and the filtration opening size changed by up to 28%. It is suggested that this effect cannot be ignored in applications where there are in-plane tensile stresses.  相似文献   

13.
Geotextiles have been used for drainage purposes in pavements for many years. To drain water out of road sections, the geotextiles need to get wet first. In this study, the wettability of three different types of geotextiles, namely wicking woven (WW) geotextile, non-wicking woven (NWW) geotextile, and nonwoven (NW) geotextile, was investigated in terms of their contact angles dependent on water-geotextile interaction. Contact angle was observed by the VCA Optima XE tensiometer for up to 12 s after a water droplet was dropped at the center of a geotextile's surface. Water droplets of two different sizes (2 μL and 5 μL) were used to demonstrate the droplet size effect on the contact angles of water on undisturbed geotextiles. Test results show that the contact angle decreased to smaller than 90° and the droplet disappeared on the wicking woven geotextile within a few seconds after water dropping, while the contact angle remained larger than or approximately equal to 90° on the other two types of geotextiles within the observation period. This comparison indicates that water penetrated faster into the wicking woven geotextile than other geotextiles. Furthermore, this study investigated the effects of soil particle intrusion and geotextile or fiber deep groove flattening associated with compaction on the wettability of geotextiles.  相似文献   

14.
Alkaline water has been known to affect polymeric materials, such as geotextiles, and this on-going study is aimed at providing a data base to see the extent, nature and incidence of the effects. An earlier study used calcium hydroxide to provide the alkalinity, whereas this study uses sodium hydroxide. Solutions of pH 10 and pH 12 (with pH 7 as control) were prepared and various geotextiles were incubated up to 120 days. Flow tests and strength tests were conducted on all test specimens on a weekly basis for the entire duration.

Results of the two phases (i.e. calcium and sodium) essentially parallel one another in that the alkalinity increases the flow time for a given volume of solution to pass through the geotextile. The effect is more pronounced for pH 12 than for pH 10. A precipitate is formed which rests either upon or within the fabric structure causing the major portion of the increased flow time.

In addition to this blinding and/or clogging phenomenon is a strength reduction in some of the fabrics. Certain polyester fabrics show measurable strength losses, while others do not. The type of polyester (there are over 200 types) is felt to play a major (but unknown) role in this selection process. Considerable research into both surface and internal morphologies seems to be warranted. Future efforts will be targeted in these directions.  相似文献   


15.
The influence of uniaxial tensile strain on the pore size distribution and filtration characteristics of geotextiles is studied. An experimental apparatus was designed and used to conduct tests for pore size distribution, flow rate through the geotextiles and the gradient ratio. Four geotextiles made of polypropylene (two heat-bonded nonwoven and two slit film woven) were studied. Throughout the test series, the geotextiles were stretched to maintain 5%, 10% and 20% in-plane uniaxial strains. The strained specimen test results were compared with those from unstrained specimen. The experimental results illustrate the pore size and the mean flow rate through the plain geotextiles increase with the increase in tensile strain. The differences in changed percentages for apparent opening size and flow rate between the two nonwoven geotextiles are much higher than those between the two woven geotextiles. The increase in tensile strain results in reduction in the gradient ratio for the soil–geotextile system. This effect is more pronounced for nonwoven geotextiles. More testing is recommended to gain a deeper understanding into tensile strain effect on various geotextiles.  相似文献   

16.
The results of an experimental study conducted to investigate the beneficial use of woven coir geotextiles as reinforcing material in a two-layer pavement section, are presented. Monotonic and repeated loads were applied on reinforced and unreinforced laboratory pavement sections through a rigid circular plate. The effects of placement position and stiffness of geotextile on the performance of reinforced sections were investigated using two base course thicknesses and two types of woven coir geotextiles. The test results indicate that the inclusion of coir geotextiles enhanced the bearing capacity of thin sections. Placement of geotextile at the interface of the subgrade and base course increased the load carrying capacity significantly at large deformations. Considerable improvement in bearing capacity was observed when coir geotextile was placed within the base course at all levels of deformations. The plastic surface deformation under repeated loading was greatly reduced by the inclusion of coir geotextiles within the base course irrespective of base course thickness. The optimum placement position of coir geotextile was found to be within the base course at a depth of one-third of the plate diameter below the surface.  相似文献   

17.
In order to transfer stress between geotextile panels the selvage edges are mechanically seamed by sewing. In light-to-medium-strength geotextiles (geotextiles with wide width tensile strengths of up to 175 kN/m (1000lb/in) it is possible to attain up to 80% efficiency in the final seamed product. Beyond this strength range the sewn seam efficiency is drastically reduced. For applications which require the use of high-strength geotextiles (i.e. soft soil stabilization) a designer is often limited by the seam strength between panels. This paper explores the use of chemical seaming as an alternative joining technique and presents results of a preliminary investigation on the performance of an epoxy resin used to lap seam a high-strength polyester geotextile.  相似文献   

18.
Pore size distribution has become a prerequisite in determining the performance of geotextiles for various functions including filtration, separation and reinforcement. The pore structure and morphology in a nonwoven geotextile are known to be complex and it becomes further complicated in hybrid nonwoven geotextiles consisting of two types of fibers. In this study, a modified model of pore size distribution of hybrid nonwoven geotextiles has been proposed based on sieving-percolation pore network theory. A comparison has been made between theoretical and experimental pore size distributions of hybrid needlepunched nonwoven geotextiles consisting of predefined weight proportions of viscose and polyester fibers. The weight proportions of the constituent fibers have been theoretically analysed for obtaining the desired pore size distributions of hybrid nonwoven geotextiles.  相似文献   

19.
Geotextiles are routinely used in separation and filtration applications. Design of these systems is currently based on saturated properties of the geotextiles and the surrounding soils. However, in the field, soil and geotextile can be in an unsaturated state for much of their design life during which they are essentially hydraulically non-conductive. Periodic wetting and drying cycles can result in rapid and large changes in hydraulic performance of soil–geotextile systems. The writers have reported the results from physical water infiltration tests on sand columns with and without a geotextile inclusion. The geotextile inclusions were installed in new and modified states to simulate the influence of clogging due to fines and to broaden the range of hydraulic properties of the geotextiles in the physical tests. This paper reports the results of numerical simulations that were undertaken to reproduce the physical tests and strategies adopted to adjust soil and geotextile properties from independent laboratory tests to improve the agreement between numerical and physical test results. For example the paper shows that the hydraulic conductivity function of the geotextile must be reduced by up to two orders of magnitude to give acceptable agreement. The lower hydraulic conductivity is believed to be due to soil intrusion that is not captured in conventional laboratory permeability tests. The calibrated numerical model is used to investigate the influence of geotextile and soil hydraulic conductivity and thickness as well as height of ponded water at the surface on wetting front advance below the geotextile and potential ponding of water above the geotextile due to a capillary break mechanism. A simple analytical model is also developed that predicts the maximum ponding height of water above the geotextile based on two-layer saturated media and 1-D steady state flow assumptions. The analytical model is used to generate a design chart to select geotextiles to minimize potential ponding of water above the geotextile. Ponding can lead to lateral flow of water along the geotextile in reinforced wall, slope, embankment and road base applications.  相似文献   

20.
Commercial software is used widely in slope stability analyses of reinforced embankments. Almost all of these programs consider the tensile strength of geotextiles and soil–geotextile interface friction. However, currently available commercial software generally does not consider the drainage function of nonwoven geotextile reinforcement. In this paper, a reinforced channel embankment reinforced by a nonwoven geotextile is analyzed using two methods. The first method only considers the tensile strength and soil–geotextile interface friction. The second method also considers the drainage function. In both cases, the reinforced embankment is modeled in rapid drawdown condition since this is one of the most important conditions with regard to stability of channel embankments. It is shown that for this type of application, modeling a nonwoven geotextile reinforced embankment using commercial software which neglects the drainage function of the geotextile may be unrealistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号