首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A shear lag solution for a hybrid unidirectional buffer strip laminate containing a rectangular cutout is presented. Fiber stresses and displacements in the main panel and buffer strips are given as explicit functions of fiber and matrix properties, and laminate and cutout configurations. Stress concentration factors and laminate ultimate strengths for both soft and stiff buffer strips are presented. A substantial improvement in the notched strength is shown to be possible by using low modulus and high strength fibers for buffer strips. The stress concentration factors for a rectangular cutout are compared with those of a rectilinear crack in a buffer strip laminate.  相似文献   

2.
《Composite Structures》1987,7(2):139-158
A shear lag solution for a hybrid buffer strip laminate containing initial damage in the form of a rectilinear notch, matrix splitting and interlaminar debonding is presented. The model is a unidirectional monolayer with two symmetric constraint layers that represent angle plies. The intent of the analysis is to estimate the remote strain required to propagate the initial damage and/or to fail the laminate catastrophically. The analytical solution has a set of integral equations in which material and geometric parameters appear explicitly. Some typical results are presented for a graphite/epoxy panel having either high strength and low modulus or low strength and low modulus buffer strips. Matrix damage, angle plies, and interlaminar debonding are shown to affect the damage tolerance capability of buffer strip laminates.  相似文献   

3.
复合材料层合板缺口强度的CDM三维数值模型   总被引:1,自引:0,他引:1       下载免费PDF全文
李秋漳  姚卫星  陈方 《复合材料学报》2016,33(12):2766-2774
针对复合材料层合结构缺口强度问题,基于连续损伤力学(CDM)提出了一种三维损伤数值模型。模型区分了层内损伤(纤维失效、纤维间失效)和层间分层损伤的不同失效模式。采用三维Puck准则与Aymerich准则对上述2类损伤进行判定,材料失效后基于CDM中线性软化模型对材料损伤进行演化。模型考虑了复合材料层合板子层的就位效应和剪切非线性行为。对Carlsson的AS4/3501-6缺口拉伸强度试验进行数值模拟。结果表明:分析结果与试验结果吻合良好,证明了该模型能够准确地预测含缺口复合材料层合板面内拉伸强度。   相似文献   

4.
An investigation into size effects and notch sensitivity in quasi-isotropic carbon/epoxy laminates was carried out. The purpose is to draw a complete picture of the strength scaling in unidirectional, quasi-isotropic, and notched carbon/epoxy laminates. A link was established between the strength scaling of the unidirectional and quasi-isotropic laminates. Efforts were made to understand the relationship between unnotched and open-hole strengths. For very small holes, the notched strengths approach the unnotched strength limit. A scaling law based on Weibull statistics was used to predict the unnotched laminate strengths. For very large holes, the same scaling law in conjunction with a detailed 3D ply-by-ply FE analysis with matrix cracks in the 90° plies and delamination cohesive interface elements was used to predict the large notched strengths. A good agreement between the modelling and experimental results was achieved. The effects of 90° matrix cracks on unnotched and notched strengths were also studied.  相似文献   

5.
A method of analysis capable of predicting accurately the fracture behavior of a unidirectional composite laminate containing symmetrically placed buffer strips is presented. The analysis is based on a materials modeling approach using the classical shear-lag assumption to describe the stress transfer between fibers. Explicit fiber and matrix properties of the three regions are retained and changes in the laminate behavior as a function of the relative material properties, buffer strip width and initial crack length are discussed. As an example, for a notch (broken fibers) in a graphite/epoxy laminate, the results show clearly the manner in which to select the most efficient combination of buffer strip properties necessary to arrest the crack. Ultimate failure of the laminate after crack arrest can occur under increasing load, either by continued crack extension through the buffer strip, or by fiber breakage in the undamaged half-plane. That is, for certain choices of relative material properties and width, the crack can jump the buffer strip. For some typical hybrid laminates it is found that a buffer strip spacing to width ratio of about four to one is the most efficient.  相似文献   

6.
The ultimate strength of composite laminates containing elliptical openings can be predicted reasonably well using two fracture models which utilize the first ply failure strength of the notched and corresponding unnotched laminates. These models have the capability to predict the fracture strength of anisotropic laminates with an opening of general construction and subjected to general in-plane loading. Although the characteristic lengths for the present models are determined empirically, it is found that the characteristic lengths for an elliptical opening of any aspect ratio can be expressed in a closed-form function. These parameters are determined using three (e.g., two circular holes and one crack) or more data points. The experimental result shows that the notched strength of the graphite/epoxy cross-ply laminate is quite sensitive to the opening aspect ratio.  相似文献   

7.
Fibre metal laminates (FMLs) are being used to manufacture many structural components in aerospace industry because of their very high strength to weight ratios, yet the exact model for estimating fatigue crack propagation in FMLs cannot be developed because of many variable parameters affecting it. In this research, tensile strength, fatigue life and fracture toughness values of 2/1 configuration carbon reinforced aluminium laminate (CARALL), aramid reinforced aluminium laminate and glass laminate aluminium reinforced epoxy specimens have been investigated. Mechanical, chemical and electrochemical surface treatments were applied to AA 1050 face sheets to improve the adhesive properties of the laminates. The specimens were prepared using vacuum assisted resin transfer moulding technique and were cut to desired shapes. Fatigue tests were conducted on centre notched specimens according to ASTM Standard E399. Real time material data and properties of adhesive were used in definition of numerical simulation model to obtain the values of stress intensity factor at different crack lengths. It was observed that CARALL shows very superior tensile and fatigue strength because of stress distribution during failure. Numerical simulation model developed in this research accurately predicts fracture toughness of aramid reinforced aluminium laminate, CARALL and glass laminate aluminium reinforced epoxy with less than 2% error. An empirical analytical model using experimental data obtained during research was developed which accurately predicts the trend of FMLs fatigue life.  相似文献   

8.
Effects of adhesive strips embedded at the interface in graphite/epoxy laminates on damage tolerance are investigated. Specimens were impact tested under approximately fixed-fixed boundary conditions. Comparisons were made between the specimens with and without the adhesive from X-ray radiographs. Delamination plotted against velocity shows substantially reduced delamination in specimens with adhesive compared with specimens without adhesive. It was observed that below a certain velocity the adhesive acts as a softening strip which confines the delamination to the area of the mesh formed by the adhesive. Three-point-bend tests show that the failure load of plain specimens is higher than for the specimens with adhesive before impact; however, after impact the strength degradation is more severe in the plain specimens. Damage mechanisms of impacted specimens were examined through the use of microphotographs.  相似文献   

9.
实验研究表明,纤维束/环氧树脂复合材料试件的横向拉伸强度与工程上常用的单向层合板横向拉伸强度在趋势上具有很好的相关性,但是数值上存在一定差距。本文使用两种碳纤维和两种环氧树脂制备了三种纤维束/环氧树脂复合材料和单向层合板,并分别测量了纤维束/环氧树脂复合材料和单向层合板的横向拉伸强度,以及环氧基体的拉伸强度。在实验基础上,应用Griffith断裂强度理论建立了纤维束/环氧树脂复合材料和单向层合板的横向拉伸强度的关系模型,通过两种复合材料实验的结果拟合了该模型中的参数。利用第三种复合材料实验进行校验,发现该模型预测的单向层合板横向拉伸强度与实测强度之间达到很好的一致性,相对偏差为9%。采用本文提出的方法,可以用较为简单的纤维束/环氧树脂复合材料和环氧基体拉伸试验预测单向层合板的横向拉伸强度。  相似文献   

10.
《Composites》1987,18(3):233-241
The feasibility of enhancing damage tolerance and durability of fibre composites through the design of microstructure has been examined using three woven fabric-reinforced composite systems (carbon, Kevlar and carbon-Kevlar in epoxy matrix). Enhancement in notched strength has been demonstrated by comparing the performance of composites with drilled and moulded-in circular holes. Specimens with moulded-in holes exhibited failure strengths which were 2.7–38.3% higher than those of drilled specimens. Furthermore, for certain lay-ups of Kevlar and carbon-Kevlar hybrid laminates, the presence of moulded-in holes did not reduce the unnotched laminate strength; indeed a strength enhancement of 0.4–22.1% was observed. Comparisons of experimental data with existing notched strength theories are made and directions for future research are indicated.  相似文献   

11.
《Composites Part B》2001,32(2):139-152
Micromechanical three-dimensional finite element models of 2/2 twill weave T300 carbon/epoxy woven fabric composite panels with moulded-in circular hole are established for stress analysis. In these models, the streamline equation is used as a shape function to simulate the fibre configuration. A progressive failure analysis together with a newly developed ‘maximum notched strength method’ are also proposed to predict the failure modes and notched strengths of the fibre dominated laminate with moulded-in hole. Perforated specimens of different hole sizes are prepared using a special procedure. Tension tests are performed to evaluate the stress–strain and failure characteristics. An increase in tensile strength with increasing hole size is observed within the experimental data range. Numerical results from progressive failure analysis provide good prediction to the failure phenomena of the fractured specimens. The notched strengths from the proposed numerical procedure are slightly higher than the experimental results.  相似文献   

12.
The aim of this study is to predict the static strength of carbon/epoxy laminates with countersunk hole. Also, three-point bend (TPB) specimens with the same lay-up were analysed. For this purpose, the notched strength of the laminates was analysed by a damage zone model (DZM), where damage around the notch is represented by an ‘equivalent crack’ with cohesive forces acting between the crack surfaces. The DZM requiring only basic properties of the laminate such as unnotched tensile strength, δ0, fracture energy, Gc*, and stiffnesses of the laminate. However, the complex geometry around the countersunk hole implies that both δ0 and Gc* will vary in this area, and in order to avoid this problem an approximate geometry of the countersunk hole is used in the DZM-calculations. With this approximation, good agreement between experimental and calculated strength was observed for the laminates with countersunk hole. This was also the case for the TPB specimens.  相似文献   

13.
A new model is proposed to explain the cracking and fracture of notched composite laminates. It is based on the energy absorption associated with the micromechanisms of fracture. Crack-growth resistance curves (R-curves) are predicted for a wide range of laminate constructions and materials, and the corresponding notched strengths deduced. Both R-curve and notched strength predictions are in good agreement with published data. The effect of improved fibre-matrix bonding on laminate notched strength is investigated in a case-study, and is successfully predicted using the model.  相似文献   

14.
Compression properties of z-pinned composite laminates   总被引:4,自引:0,他引:4  
The effect of z-pinning on the in-plane compression properties and failure mechanisms of polymer laminates is experimentally studied in this paper. The reduction to the compression modulus, strength and fatigue performance of carbon/epoxy laminates with increasing volume content and diameter of pins is determined. The elastic modulus decreases at a quasi-linear rate with increasing pin content and pin diameter. Softening is caused by fiber waviness around the pins and reduced fiber volume content due to volumetric swelling of the laminate from the pins. A simple model is presented for calculating the compression modulus of pinned laminates that considers the softening effects of fiber waviness and fiber dilution. The compression strength and fatigue life also decrease with increasing volume content and diameter of the pins. The strength and fatigue properties are reduced by fiber kinking caused by fiber waviness around the pins and the reduced fiber content caused by swelling. The deterioration to the compression properties is also dependent on the fiber lay-up pattern of the laminate, with the magnitude of the loss in properties increasing with the percentage of 0° (load bearing) fibers in the laminate. The paper gives suggestions for minimizing the loss to the compression properties to laminates due to pinning.  相似文献   

15.
《Composites Part A》2000,31(6):531-536
This paper examines the compressive strength data of a recent experimental study [Smith FC. The effect of constituents’ properties on the mechanical performance of fibre-reinforced plastics. PhD thesis. Centre for Composite Materials, Imperial College, April 1998] concerned with the evaluation of a range of engineering properties of continuous carbon fibre/epoxy composites subjected to static tensile and compressive loading. A plastic fibre kinking analysis [Budiansky B. Micromechanics. Comput Struct 1983;16(1):3–12] and a linear softening cohesive zone model (CZM) [Soutis C. Compressive failure of notched carbon fibre–epoxy panels. PhD thesis. Cambridge University Engineering Department, UK, 1989; Soutis C, Fleck NA, Smith PA. Failure prediction technique for compression loaded carbon fibre–epoxy laminates with an open hole. J Comp Mat 1991;25(5):1476–1498] are used for the prediction of the unnotched and open hole compressive strength (OHC) of unidirectional and multidirectional laminates made of six different commercially available CFRP prepregs. Damage introduced by drop-weight (low-velocity) impact is modelled as an equivalent open hole and the cohesive zone model [Soutis C. Compressive failure of notched carbon fibre–epoxy panels. PhD thesis. Cambridge University Engineering Department, UK, 1989; Soutis C, Fleck NA, Smith PA. Failure prediction technique for compression loaded carbon fibre–epoxy laminates with an open hole. J Comp Mat 1991;25(5):1476–1498] is applied to estimate compression-after-impact (CAI) strength. The unnotched strength is accurately predicted from the knowledge of initial fibre misalignment and the shear yield stress of the composite, while the difference between the theoretical and experimental OHC and CAI strength results in most cases is less than 10%.  相似文献   

16.
《Composites》1994,25(8):822-834
The effects of surface texture induced by secondary processing on the flexural properties of a graphite/epoxy laminate were evaluated. Test specimens were machined by three methods including the abrasive waterjet, circular diamond saw and shaper planer mounted with polycrystalline diamond tool inserts. Machined surface topography was evaluated by surface profilometry as well as scanning electron microscopy. Flexural strength and modulus were obtained from fourpoint flexure loading to failure and Weibull statistics were used to evaluate characteristic strength and modulus. Although the textures of the machined surface representative of each process were different, no difference in bulk strength of the graphite/epoxy laminate was noted under bending loads.  相似文献   

17.
为改善玻璃纤维增强聚苯硫醚(PPS)复合板材的力学性能,分别以柔性的玻璃纤维布和PPS非织造布作为增强体和基体,采用叠层热压成型法制备出刚性的复合板材,采用力学性能测试、XRD、PLM、SEM研究了热压温度、热压时间、玻璃纤维含量和处理玻璃纤维布的硅烷偶联剂种类对复合板材的力学性能、结晶度、结晶形态和微观形貌的影响。结果表明,在无硅烷偶联剂处理玻璃纤维布时,控制热压温度为320℃,热压时间为30 min,压力为30 MPa,玻璃纤维质量分数为50%,复合板材的拉伸强度和弯曲强度最佳,分别为286.0 MPa和175.0 MPa,缺口冲击强度达到61.6 MPa。使用硅烷偶联剂KH560处理玻璃纤维布,在最佳成型工艺条件下,复合板材力学性能改善最明显,其弯曲强度为394.9 MPa,弯曲模量为23.6 GPa,层间剪切强度为16.4 MPa,缺口冲击强度为81.0 MPa。通过优化实验条件和使用硅烷偶联剂处理玻璃纤维表面,复合板材的力学性能得到了明显提高。  相似文献   

18.
The mechanical performance and impact behaviour of carbon-fibre reinforced polyether-ether ketone (PEEK) with a (0, ±45) lay-up has been compared with that of a similar carbon fibre/epoxy laminate. Differences occurred because of the greater shear strength and lower shear modulus of the carbon-fibre reinforced PEEK. When compared with the carbon fibre/epoxy laminate, carbon-fibre reinforced PEEK was more notch sensitive in tension and had a lower undamaged compressive strength. However, after impact, the residual compressive strength was significantly greater for carbon-fibre reinforced PEEK because delamination was less extensive.  相似文献   

19.
Externally bonded Carbon Fiber Reinforced Polymer (CFRP) strips have been used for strengthening reinforced concrete structures. This paper presents an experimental study on the debonding of externally bonded CFRP strips anchored to a concrete substrate by a commercial epoxy adhesive. The study represents the basis for the characterization of an innovative ‘gradient method’, giving the possibility to anchor prestressed CFRP strips to concrete without the use any mechanical anchorage systems such as plates and bolts. Bond between the two components is achieved by an epoxy adhesive able to carry loads after an accelerated curing process under elevated temperatures. The effect of heating configuration/duration, strip thickness and bond length on the temporary bond resistance have been investigated using prestressed and non-prestressed CFRP-strips. Besides the optimization of the heating elements necessary for the curing process, curing parameters for an optimal temporary bond strength could be determined. Twenty-five minutes of heating and curing at 90 °C was found to be an optimum heating configuration, resulting in better short-term mechanical performances than after conventional curing at room temperature for several days. The main reason is a temporarily softer adhesive which allows the use of the full bond length by reducing shear force peaks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号