首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The creep behaviour of Al-Zn-Mg (7039) and Al-Zn-Mg-Cu (7075) alloys is evaluated at elevated temperatures (443T533 K and 483T563 K) under constant stresses between 49 and 123 MPa, respectively, in a custom-built creep testing facility. The measured activation energies of these alloys are 172–185 kJ mo–1 and 248–272 kJ mol–1. As the stress increases, the activation energy in both cases decreases due to the high density of dislocations. The average exponent values of these alloys are 7 and 9. The microstructure observation reveals that the dominant fracture mode of 7039 alloy is intergranular and that of 7075 alloy is transgranular.  相似文献   

2.
The Mg–8Gd–2Y–1Nd–0.3Zn–0.6Zr (wt.%) alloy sheet was prepared by hot extrusion technique, and the structure and mechanical properties of the extruded alloy were investigated. The results show that the alloy in different states is mainly composed of α-Mg solid solution and secondary phases of Mg5RE and Mg24RE5 (RE = Gd, Y and Nd). At aging temperatures from 200 °C to 300 °C the alloy exhibits obvious age-hardening response. Great improvement of mechanical properties is observed in the peak-aged state alloy (aged at 200 °C for 60 h), the ultimate tensile strength (σb), tensile yield strength (σ0.2) and elongation () are 376 MPa, 270 MPa and 14.2% at room temperature (RT), and 206 MPa, 153 MPa and 25.4% at 300 °C, respectively, the alloy exhibits high thermal stability.  相似文献   

3.
This work investigated the effect of nominal boron additions of 0.1 and 1.0 wt.% on the elevated-temperature (455 °C) fatigue deformation behavior of Ti–6Al–4V(wt.%) castings for maximum applied stresses between 250 and 450 MPa (R = 0.1 and 5 Hz). Boron additions resulted in a dramatic refinement of the as-cast grain size, and larger boron additions resulted in larger titanium-boride (TiB) phase volume percents. The boron-containing alloys exhibited longer average fatigue lives than those for Ti–6Al–4V, which was suggested to be related to the reduced as-cast grain size and the addition of strong and stiff TiB phase. The Ti–6Al–4V–0.1B alloy exhibited the longest average fatigue lives. The TiB phase cracked during the fatigue experiments and this resulted in a decreasing Young's modulus with increased cycle number. Each alloy exhibited α-phase cracking and environmentally assisted surface edge cracking.  相似文献   

4.
Al–Sc and Al–Sc–Zr alloys containing 0.05, 0.1 and 0.5 wt.% Sc and 0.15 wt.% Zr were investigated using optical microscopy, electron microscopy and X-ray diffraction. The phase composition of the alloys and the morphology of precipitates that developed during solidification in the sand casting process and subsequent thermal treatment of the samples were studied. XRD analysis shows that the weight percentage of the Al3Sc/Al3(Sc, Zr) precipitates was significantly below 1% in all alloys except for the virgin Al0.5Sc0.15Zr alloy. In this alloy the precipitates were observed as primary dendritic particles. In the binary Al–Sc alloys, ageing at 470 °C for 24 h produced precipitates associated with dislocation networks, whereas the precipitates in the annealed Al–Sc–Zr alloys were free of interfacial dislocations except at the lowest content of Sc. Development of large incoherent precipitates during precipitation heat treatment reduced hardness of all the alloys studied. Growth of the Al3Sc/Al3(Sc, Zr) precipitates after heat treatment was less at low Sc content and in the presence of Zr. Increase in hardness was observed after heat treatment at 300 °C in all alloys. There is a small difference in hardness between binary and ternary alloys slow cooled after sand casting.  相似文献   

5.
The effect of β-iron intermetallics and porosity on the tensile properties in cast Al–Si–Cu and Al–Si–Mg alloys were investigated for this research study, using experimental and industrial 319.2 alloys, and industrial A356.2 alloys. The results showed that the alloy ductility and ultimate tensile strength (UTS) were subject to deterioration as a result of an increase in the size of β-iron intermetallics, most noticeable up to β-iron intermetallic lengths of 100 μm in 319.2 alloys, or 70 μm in A356.2 alloys. An increase in the size of the porosity was also deleterious to alloy ductility and UTS. Although tensile properties are interpreted by means of UTS vs. log elongation plots in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log elongation plots, where the properties increased linearly between conditions of low cooling rate–high Fe and high cooling rate–low Fe. The results are explained in terms of the β-Al5FeSi platelet size and porosity values obtained.  相似文献   

6.
The microstructure and compressive creep behaviors of as-cast and aging-treated Mg–5 wt% Sn alloys are investigated in this paper. The compressive creep resistance of aging-treated Mg–5 wt% Sn alloy is much better than that of as-cast alloy at the applied stresses from 25 MPa to 35 MPa and the temperatures from 423 K to 473 K, which is mainly due to the dispersive distribution of Mg2Sn phase in the aging-treated Mg–5 wt% Sn alloy. The calculated average values of stress exponent n and activation energy Qc suggest that dislocation cross slip and dislocation climb happen respectively in as-cast and aging-treated Mg–5 wt% Sn alloys during creep.  相似文献   

7.
A new synergistic effect of corrosion and stress on the viscoelasticity of pure magnesium and magnesium alloys has been shown. This phenomenon named corrosion creep has been studied in 99.9653% Mg, die-cast AZ91D (Mg–9% Al–1% Zn), AM50 (Mg–5% Al–0.4% Mn), and AS21 (Mg–2.3% Al, 0.23% Mn, 1.10% Si) alloys. Creep tests were carried out at 25°C in air and in the borate buffer aqueous solution (pH 9.3). It is found that the highest sensitivity to creep in the corrosive environment is observed in the alloy with the highest Al content. This agrees with the data obtained earlier in the study of mechanoelectrochemical behavior and corrosion fatigue of Mg alloys. However, in air, the creep behavior of all alloys at room temperature is approximately the same. Creep life of pure magnesium and its alloys significantly decreases in a corrosive environment. Corrosion-creep cracks filled with magnesium hydroxide particles were observed by SEM–EDS analysis at the surface of AS21 alloy. The thickness of the oxide layer defined by AES in samples of AZ91D, AM50, and AS21 alloys placed for 2 h into the borate solution amounts to 540, 1320, and 1440 nm, respectively. This can be explained with the account for surface phenomena.  相似文献   

8.
The low cycle fatigue René 80, a Ni-base superalloy, was studied at temperature of 871 °C, R = (min/max) = 0 and strain rate of about 2 × 10−3 s−1. The dislocation structure and failure surface observations were evaluated through TEM and SEM. TEM studies showed that at Δt = 0.8% during the first cycle the dislocations formed a hexagonal network in the γ-phase matrix. When the number of cycles increased, the density of dislocations increased as well. At N = Nf and Δt = 0.8% the cutting of γ′ precipitates took place. SEM studies at Δt = 0.8% and N = Nf showed that fatigue crack initiation generally occurred at the surface, where it is depleted of the γ′ phase as a result of oxidation by the high-temperature exposure. In addition to depleted zones, the grain boundary oxidation and oxide spikes were also considered as further crack initiation sites.  相似文献   

9.
The creep properties of silicon nitride containing 6 wt % yttria and 2 wt% alumina have been determined in the temperature range 1573 to 1673 K. The stress exponent, n, in the equation n was determined to be 2.00±0.15 and the true activation energy was found to be 692±25 kJ mol–1. Transmission electron microscopy studies showed that deformation occurred in the grain boundary glassy phase accompanied by microcrack formation and cavitation. The steady state creep results are consistent with a diffusion controlled creep mechanism involving nitrogen diffusion through the grain boundary glassy phase.  相似文献   

10.
The purpose of this study is to understand the anomalous creep behaviour of Ni-22 at % Cu alloy at the suggested critical miscibility gap temperature, below 598 K (0.36T m). The Cu-Ni system is classified as a class II solid solution at temperatures above 0.4T m, and it is also experimentally verified by the authors that the characteristic creep behaviour of the alloy used for this work is that for a class II solid solution. However, at low temperatures, this particular alloy shows different creep behaviours, with small stress increment in the steady state, sigmodial creep deformation is observed while with large stress increases normal primary creep occurs. When unloading the stress during creep and ageing at the test temperature, no softening due to recovery is observed but the same creep rate is achieved. The activation energy of the creep for the quenched and aged specimen is anomalously high, 326 kJ mol–1, however, for the annealed specimen it was 167 kJ mol–1 which is the same for that of pipe diffusion. On the basis of the observed experimental results and proper analysis, it is hypothesized that, at the test temperature, the possible formation of the solute clustering is responsible for the high activation energy and stress exponent for the creep deformation. Using the mechanical testing, creep test, it is experimentally verified that Cu-Ni system has a miscibility gap at low temperature.  相似文献   

11.
Temperature dependence of tensile properties ofTi–47Al–2Mn–2Nb–0.8TiB2 alloy was investigated andbrittle-to-ductile transition temperature (T BD) wasevaluated accordingly within the strain rate range from 10–5 to10–1 s–1. T BD and its strain rate sensitivity inTi-47Al-2Mn-2Nb-0.8TiB2 alloy were compared withthose in Ti-47Al-2Mn-2Nb alloy. It is found that theminor addition of 1.0 at% boron reduces T BD by more than100 K and that T BD in both alloys shows a positivesensitivity to the strain rate. But the B-doped alloy has a lower BDTactivation energy (256 kJ/mol) than that of B-free alloy(324 kJ/mol). The effect of boron on T BD and its strain ratesensitivity is attributed to the reduction in the grain size.  相似文献   

12.
This study was undertaken to investigate the influence of Al–5Ti–1B and Al–5Zr master alloys on the structural characteristics and tensile properties of Al–12Zn–3 Mg–2.5Cu aluminum alloy. The optimum amount for Ti and Zr containing master alloys was selected as 1 wt.% and 6 wt.%, respectively. The results also showed that Ti containing master alloy is more effective in reducing average grain size of the alloy. T6 heat treatment was applied for all specimens before tensile testing. In heat treated condition, the average tensile strength of 505 MPa was found to be increased to 621 MPa for sample refined with 1 wt.% Al–5Ti–1B (0.05 wt.% Ti). SEM fractography of the fractured faces of several castings showed an overall macroscopically brittle appearance at low magnifications. At higher magnifications, unrefined specimens showed cracking along the grains, whereas Ti-refined specimens showed cracks in individual intermetallic compounds.  相似文献   

13.
High-temperature creep in single crystals of Y3Al5O12 (YAG) was studied by constant strainrate compression tests. The creep resistance of YAG is very high: a stress of ~ 300 MPa is needed to deform at a strain rate of 10–6 (s–1) at a temperature as high as 1900 K (~0.84 T m, (melting temperature)). YAG deforms using the 111 {1¯10} slip systems following a power law with stress exponent n ~ 3 and activation energy E* ~ 720 kJ mol–1. However, a small dependence of n on temperature and of E* on stress was observed. This stress-dependence of activation energy combined with the observed dislocation microstructures suggests that the high creep resistance of YAG is due to the difficulty of dislocation glide as opposed to the difficulty of climb. Present dislocation creep data are compared with diffusion creep data and a deformation mechanism map is constructed. Large transition stresses (2–3 GPa for 10 m grain size) are predicted, implying that deformation of most fine-grained YAG will occur by diffusion creep.  相似文献   

14.
The flow behavior of Al–Cu–Mg–Ag alloy and its microstructural evolution during hot compression deformation were studied by thermal simulation test. The flow stress increased with increasing the strain rate, and decreased with increasing the deforming temperature, which can be described by a constitutive equation in hyperbolic sine function with the hot deformation activation energy 196.27 kJ/mol, and can also be described by a Zener–Hollomon parameter. The dynamic recrystallization only occurred at low Z values, which must be below or equal to a constant of 5.31 × 1013 s−1. With decreasing Z value, the elongated grains coarsed and the tendency of dynamic recrystallization enhanced. Correspondingly, the subgrain size increased and the dislocation density decreased. And the main soften mechanism of the alloy transformed from dynamic recovery to dynamic recrystallization.  相似文献   

15.
A binary magnesium alloy, Mg–2 wt.%Nd, has been prepared. Under the condition of temperature between 150 and 250 °C and applied stress between 30 and 110 MPa, the alloy exhibits good creep resistance due to both solution-hardening and especially precipitation-hardening. Tiny precipitates forming dynamically during creep have been observed, which play an important role in restricting dislocation movements. When the creep tests are carried out at the temperature range between 150 and 250 °C, the stress exponents lie in the range of 4.5–7.1 at low stresses, which is consistent with the “five-power-law”. The values of stress exponent increase up to 9.8–29.5 at high stresses indicate power-law breakdown. When the creep tests are carried out under the applied stress between 30 and 90 MPa, the apparent activation energy values vary from 70.0 to 96.0 kJ/mol at low temperatures, but increase to 199.9–246.1 kJ/mol at high temperature range. Dislocations in basal plane are activated in the primary creep stage, but as creep goes on, they are observed in non-basal plane. The creep is mainly controlled by both dislocation-climb and cross-slip.  相似文献   

16.
Airflow inside a cold store is investigated using computational fluid dynamics. The airflow model is based on the steady state incompressible, Reynolds-averaged Navier–Stokes equations. The turbulence is taken into account using a k− model. The standard as well as the Renormalisation-Group (RNG) version of the k− model is investigated. The forced-circulation air cooler unit is modelled with an appropriate body force and resistance, corresponding to the characteristics of the fan and the tube-bank evaporator. The finite volume method of discretisation is used. The validation of the model has been performed by a comparison of the calculated time-averaged velocity magnitudes with the mean velocities measured by means of a hot-film type omni-directional velocity sensor. A relative error on the calculated air velocities of 26% was observed. The RNG k− model does not help to improve the prediction of the recirculation. Both a finer grid and enhanced turbulence models are needed to improve the predictions.  相似文献   

17.
The B2O3-doped 5Li2O–1Nb2O5–5TiO2 composite microwave dielectric ceramics prepared by conventional and low-temperature single-step reactive sintering processes were investigated in the study. Without any calcinations involved, the Nb2O5 mixture of Li2CO3 and TiO2 was pressed and sintered directly in the reactive sintering process. More uniform and finer grains could be obtained in the 5Li2O–1Nb2O5–5TiO2 ceramics by reactive sintering process, which could effectively save energy and manufacturing cost. And relatively good microwave dielectric properties of r = 41, Q × f = 9885 GHz and τf = 43.6 ppm/°C could be obtained for the 1 wt.% B2O3-doped ceramics reactively sintered at 900 °C.  相似文献   

18.

The friction stir welded joint of wrought ZM21 alloy was divided into five parts, and their localized creep behavior was studied via the impression method. The tests were carried out in the stress range of 300–450 MPa (σimp/G ≈ 0.02–0.03) and in the temperature range of 448–523 K. Optical and SEM micrographs and EDS taken before and after the impression tests were used to study the microstructure of various zones of the FS welded joint. Power law was found to satisfactorily relate the stress and strain rates. The steady-state impression velocity was found to vary significantly between the advancing and retreating sides of TMAZ and HAZ. For TMAZ, the creep exponent on the AS was 4.8, and on the RS, it was 7.8. The activation energy on the AS was ~?133 kJ/mol, and on the RS, it was ~?101 kJ/mol. Similarly, for HAZ, the creep exponent on the AS was found to be 5.5 and on the RS, it was 4.9. The activation energy on the AS was ~?86 kJ/mol and on the RS, it was ~?232 kJ/mol. The cross-over of steady-state impression velocity of different zones indicates that the weak zone was temperature and stress dependent. Within the stresses and temperatures studied, the weld zone's creep resistance (i.e., lower minimum impression velocity) was found to be better than the base material. As it is with most magnesium alloys, dislocation climb was found to be the operative mechanism in the FS weldments of ZM21 alloy. The rate-controlling mechanism remains to be identified because the wide variation in n and Q values suggests that different creep mechanisms are in operation in different zones.

Graphical abstract
  相似文献   

19.
The high-temperature mechanical behaviour and microstructural evolution of experimental SiC fibres (Hi-Nicalon) with a low oxygen content (<0.5 wt%) have been examined up to 1600 °C. Comparisons have been made with a commercial Si-C-O fibre (Nicalon Ceramic Grade). Their initial microstructure consists of -SiC crystallites averaging 5–10 nm in diameter, with important amounts of graphitic carbon into wrinkled sheet structures of very small sizes between the SiC grains. The fall in strength above 800 °C in air is related to fibre surface degradation involving free carbon. Crystallization of SiC and carbon further develops in both fibres subject to either creep or heat treatment at 1300 °C and above for long periods. The fibres are characterized by steady state creep and greater creep resistance (one order of magnitude) compared to the commercial Nicalon fibre. The experimental fibre has been found to creep above 1280 °C under low applied stresses (0.15 GPa) in air. Significant deformations (up to 14%) have been observed, both in air and argon above 1400 °C. The stress exponents and the apparent activation energies for creep have been found to fall in the range 2–3, both in air and argon, and in the range 200–300 kJ mol–1 in argon and 340–420 kJ mol–1 in air. The dewrinkling of carbon layer packets into a position more nearly aligned with the tensile axis, their sliding, and the collapse of pores have been proposed as the mechanisms which control the fibre creep behaviour.  相似文献   

20.
In order to develop a new high damping aluminium alloy with strength and toughness for advanced aircraft structure application, rapidly solidified (RS) Al–Fe–Mo–Si/Al alloys were synthesized. The damping behaviour, mechanical properties and microstructures of the alloys were studied. Results showed that the damping capacities of RS Al–Fe–Mo–Si/10–15% Al alloys are stable between 7.0–10.0×10-3 at room temperature, which almost reach the high damping threshold, 10.0×10-3. At lower frequency (0.1–10 Hz) the damping capacity is decidely frequency and temperture dependent above 50°C, with lowest frequency and highest temperature resulting in the highest less factor. It was noted that mechanical properties of the Al–Fe–Mo–Si/10–15% Al alloys are both excellent at room temperature (b=536–564 MPa, =7.2–11.4%) and at elevated temperature (250°C: b=295–324 MPa). Analysis of microstructures reveal that the damping capacity arises from deformation of the pure Al areas, and strength at elevated temperature from the dispersion strengthening of intermetallic phase. © 1998 Chapman & Hall  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号