首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hamberg M 《Lipids》2000,35(4):353-363
[1-14C]Linoleic acid was incubated with a whole homogenate preparation from potato stolons. The reaction product contained four major labeled compounds, i.e., the α-ketol 9-hydroxy-10-oxo-12(Z)-octadecenoic acid (59%), the epoxy alcohol 10(S),11(S)-epoxy-9(S)-hydroxy-12(Z)-octadecenoic acid (19%), the divinyl ether colneleic acid (3%), and a new cyclopentenone (13%). The structure of the last-mentioned compound was determined by chemical and spectral methods to be 2-oxo-5-pentyl-3-cyclopentene-1-octanoic acid (trivial name, 10-oxo-11-phytoenoic acid). Steric analysis demonstrated that the relative configuration of the two side chains attached to the five-membered ring was cis, and that the compound was a racemate comprising equal parts of the 9(R), 13(R) and 9(S), 13(S) enantiomers. Experiments in which specific trapping products of the two intermediates 9(S)-hydroperoxy-10(E), 12(Z)-octadecadienoic acid and 9(S), 10-epoxy-10, 12(Z)-octadecadienoic acid were isolated and characterized demonstrated the presence of 9-lipoxygenase and allene oxide synthase activities in the tissue preparation used. The allene oxide generated from linoleic acid by action of these enzymes was further converted into the cyclopentenone and α-ketol products by cyclization and hydrolysis, respectively. Incubation of [1-14C]linolenic acid with the preparation of potato stolons afforded 2-oxo-5-[2′(Z)-pentenyl]-3-cyclopentene-1-octanoic acid (trivial name, 10-oxo-11, 15(Z)-phytodienoic acid), i.e., an isomer of the jasmonate precursor 12-oxo-10, 15(Z)-phytodienoic acid. Quantitative determination of 10-oxo-11-phytoenoic acid in linoleic acid-supplied homogenates of different parts of the potato plant showed high levels in roots and stolons, lower levels in developing tubers, and no detectable levels in leaves.  相似文献   

2.
It has previously been determined that (13S,9Z,11E)-13-hydroperoxy-9,11-octadecadienoic acid was mainly converted into (13S,9Z,11E)-13-hydroxy-9,11-octadecadienoic acid by 5 N KHO with preservation of the stereochemistry of the reactant [Simpson, T.D., and Gardner, H.W. (1993)Lipids 28, 325–330]. In addition, about 20–25% of the reactant was converted into several unknown by-products. In the present work it was confirmed that the stereochemistry was conserved during the hydroperoxy-diene to hydroxydiene transformation, but also, novel by-products were identified. It was found that after only 40 min reaction (9Z)-13-oxo-trans-11,12-epoxy-9-octadecenoic acid accumulated to as much as 7% of the total. Later, (9Z)-13-oxo-trans-11,12-epoxy-9-octadecenoic acid began to disappear, and several other compounds continued to increase in yield. Two of these compounds, 2-butyl-3,5-tetradecadienedioic acid and 2-butyl-4-hydroxy-5-tetradecenedioic acid, were shown to originate from (9Z)-13-oxo-trans-11,12-epoxy-9-octadecenoic acid, and they accumulated up to 2–3% each after 4 to 6 h. Some other lesser products included 11-hydroxy-9,12-heptadecadienoic acid, 3-hydroxy-4-tridecenedioic acid, 13-oxo-9,11-octadecadienoic acid and 12,13-epoxy-11-hydroxy-9-octadecenoic acid. Except for the latter two, most or all of the compounds could have originated from Favorskii rearrangement of the early product, (9Z)-13-oxo-trans-11,12-epoxy-9-octadecenoic acid, through a cyclopropanone intermediate.  相似文献   

3.
Mats Hamberg 《Lipids》1989,24(4):249-255
The major part (80%) of the fatty acid hydroperoxide isomerase activity present in homogenates of the fungus,Saprolegnia parasitica, was localized in the particle fraction sedimenting at 105,000×g. 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid and 9(S)-hydroperoxy-10(E),12(Z)-octadecadienoic acid were both good substrates for the particle-bound hydroperoxide isomerase. The products formed from the 13(S)-hydroperoxide were identified as an α,β- and a γ,δ-epoxy alcohol, i.e., 11(R),12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoic acid and 9(S),10(R)-epoxy-13(S)-hydroxy-11(E)-octadecenoic acid, respectively. The 9(S)-hydroperoxide was converted in an analogous way into an α,β-epoxy alcohol, 10(R),11(R)-epoxy-9(S)-hydroxy-12(Z)-octadecenoic acid and a γ,δ-epoxy alcohol, 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. 9(R,S)-Hydroperoxy-10(E),12(E)-octadecadienoic acid and 13(R,S)-hydroperoxy-9(E),11(E)-octadecadienoic acid were poor substrates for theS. parasitica hydroperoxide isomerase. Experiments with 13(R,S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid showed that the 13(R)-hydroperoxy enantiomer was slowly isomerized by the enzyme. The major product was identified as α,β-epoxy alcohol 11(R),12(R)-epoxy-13(R)-hydroxy-9(Z)-octadecenoic acid.  相似文献   

4.
Oliw EH  Cristea M  Hamberg M 《Lipids》2004,39(4):319-323
Manganese lipoxygenase (Mn-LO) oxygenates linoleic acid (LA) to a mixture of the hydroperoxides—11(S)-hydroperoxy-9Z,12Z-octadecadienoic acid [11(S)-HPODE] and 13(R)-hydroperoxy-9Z,11E-octadecadienoic acid [13(R)-HPODE]- and also catalyzes the conversion of 11(S)-HPODE to 13(R)-HPODE via oxygen-centered (LOO•) and carbon-centered (L•) radicals [Hamberg, M., Su, C., and Oliw, E. (1998) Manganese Lipoxygenase. Discovery of a Bis-allylic Hydroperoxide as Product and Intermediate in a Lipoxygenase Reaction, J. Biol. Chem. 273, 13080–13088]. The aims of the present work were to investigate whether 11-HPODE can also be produced by iron-dependent lipoxygenases and to determine the enzymatic transformations of stereoisomers of 11-HPODE by lipoxygenases. Rice leaf pathogen-inducible lipoxygenase, but not soybean lipoxygenase-1 (sLO-1), generated a low level of 11-HPODE (0.4%) besides its main hydroperoxide, 13(S)-HPODE, on incubation with LA. Steric analysis revealed that 11-HPODE was enriched with respect to the R enantiomer [74% 11(R)]. In agreement with previous results, 11(S)-HPODE incubated with Mn-LO provided 13(R)-HPODE, and the same conversion also took place with the methyl ester of 11(S)-HPODE. 11(R,S)-HPODE was metabolized biphasically in the presence of Mn-LO, i.e., by a rapid phase during which the 11(S)-enantiomer was converted into 13(R)-HPODE and a slow phase during which the 11(R)-enantiomer was converted into 9(R)-HPODE. sLO-1 catalyzed a slow conversion of 11(S)-HPODE into a mixture of 13(R)-HPODE (75%), 9(S)-HPODE (10%), and 13(S)-HPODE (10%), whereas 11(R,S)-HPODE produced a mixture of nearly racemic 13-HPODE (≈70%) and 9-HPODE (≈30%). The results showed that 11-HPODE can also be produced by an iron-dependent LO and suggested that the previously established mechanism of isomerization of 11(S)-HPODE involving suprafacial migration of O2 is valid also for the isomerizations of 11(R)-HPODE by Mn-LO and of 11(S)-HPODE by sLO-1.  相似文献   

5.
Ernst H. Oliw  Mats Hamberg 《Lipids》2019,54(9):543-556
Fusarium oxysporum f. sp. tulipae (FOT) secretes (+)-7-iso-jasmonoyl-(S)-isoleucine ((+)-JA-Ile) to the growth medium together with about 10 times less 9,10-dihydro-(+)-7-iso-JA-Ile. Plants and fungi form (+)-JA-Ile from 18:3n-3 via 12-oxophytodienoic acid (12-OPDA), which is formed sequentially by 13S-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase (AOC). Plant AOC does not accept linoleic acid (18:2n-6)-derived allene oxides and dihydrojasmonates are not commonly found in plants. This raises the question whether 18:2n-6 serves as the precursor of 9,10-dihydro-JA-Ile in Fusarium, or whether the latter arises by a putative reductase activity operating on the n-3 double bond of (+)-JA-Ile or one of its precursors. Incubation of pentadeuterated (d5) 18:3n-3 with mycelia led to the formation of d5-(+)-JA-Ile whereas d5-9,10-dihydro-JA-Ile was not detectable. In contrast, d5-9,10-dihydro-(+)-JA-Ile was produced following incubation of [17,17,18,18,18-2H5]linoleic acid (d5-18:2n-6). Furthermore, 9(S),13(S)-12-oxophytoenoic acid, the 15,16-dihydro analog of 12-OPDA, was formed upon incubation of unlabeled or d5-18:2n-6. Appearance of the α-ketol, 12-oxo-13-hydroxy-9-octadecenoic acid following incubation of unlabeled or [13C18]-labeled 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid confirmed the involvement of AOS and the biosynthesis of the allene oxide 12,13(S)-epoxy-9,11-octadecadienoic acid. The lack of conversion of this allene oxide by AOC in higher plants necessitates the conclusion that the fungal AOC is distinct from the corresponding plant enzyme.  相似文献   

6.
Mats Hamberg 《Lipids》1991,26(6):407-415
The methyl esters of 9S,10S,13R-trihydroxy-11E-octadecenoic acid, 9S,10R,13S-trihydroxy-11E-octadecenoic acid, and 9S,10R,13R-trihydroxy-11E-octadecenoic acid were prepared from 9S-hydroperoxy-10E,12Z-octadecadienoic acidvia the epoxy alcohols methyl 10R,11R-epoxy-9S-hydroxy-12Z-octadecenoate and methyl 10S,11S-epoxy-9S-hydroxy-12Z-octadecenoate. The trihydroxyesters, as well as four stereoisomeric methyl 9,12,13-trihydroxy-10E-octadecenoates earlier prepared [Hamberg, M.,Chem. Phys. Lipids 43, 55–67 (1987)], were characterized by thin-layer chromatography, gas-liquid chromatography, mass spectrometry, and by chemical degradation. Availability of these chemically defined trihydroxyoctadecenoates made it possible to design a method for regio- and stereochemical analysis of 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids obtained from various sources. Application of the method revealed that the mixture of 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids formed during autoxidation of linoleic acid in aqueous medium contained comparable amounts of the sixteen possible regio- and stereoisomers. Furthermore, hydrolysis of the allylic epoxy alcohol, methyl 9S,10R-epoxy-13S-hydroxy-11E-octadecenoate, yielded a major trihydroxyoctadecenoate,i.e., methyl 9S,10S,13S-trihydroxyl-11E-octadecenoate, together with smaller amounts of methyl 9S,10R,13S-trihydroxy-11E-octadecenoate, methyl 9S,12R,13S-trihydroxy-10E-octadecenoate, and methyl 9S,12S,13S-trihydroxy-10E-octadecenoate.  相似文献   

7.
Jie MS  Lam CN 《Lipids》2004,39(6):583-587
The reaction of methyl 11, 12-E-epoxy-9Z-octadecenoate (1) with boron trifluoride etherate furnished a mixture of methyl 12-oxo-10E-octadecenoate (3a) and methyl 11-oxo-9E-octadecenoate (3b) in 66% yield. Methyl 9, 10-Z-epoxy-11 E-octadecenoate (2) with boron trifluoride etherate furnished a mixture of methyl 9-oxo-10 E-octadecenoate (4a, 45%) and methyl 10-oxo-11 E-octadecenoate (4b, 19%). A plausible mechanism is proposed for these reactions, which involves the attack on the epoxy ring system by BF3, followed by deprotonation, oxo formation, and double bond migration to give a mixture of two positional α,β-unsaturated C18 enone ester derivatives (3a/3b, 4a/4b). The structures of these C18 enone ester derivatives (3a/3b, 4a/4b) were identified by a combination of NMR spectroscopic and mass spectrometric analyses.  相似文献   

8.
Recently, corn (Zea mays L.) hydroperoxide dehydrase was found to catalyze the conversion of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid into an unstable fatty acid allene oxide, 12,13(S)-epoxy-9(Z),11-octadecadienoic acid. This study is concerned with the chemistry of 12,13(S)-epoxy-9(Z),11-octadecadienoic acid in the presence of vertebrate serum albumins. Albumins were found to greatly enhance the aqueous half-life of the allene oxide, i.e. 14.1±1.8 min, 11.6±1.2 min and 4.8±0.5 min at 0 C in the presence of 15 mg/ml of bovine, human and equine serum albumins, respectively, as compared with ca. 33 sec in the absence of albumin. Degradation of allene oxide in the presence of bovine serum albumin led to the formation of a novel cyclization product, i.e. 3-oxo-2-pentyl-cyclopent-4-en-1-octanoic acid (12-oxo-10-phytoenoic acid, in which the relative configuration of the side chains attached to the five-membered ring istrans). Steric analysis of the cyclic derivative showed that the compound was largely racemic (ratio between enantiomers, 58∶42). 12-Oxo-10,15(Z)-phytodienoic acid, needed for reference purposes, was prepared by incubation of 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid with corn hydroperoxide dehydrase. Steric analysis showed that the 12-oxo-10,15(Z)-phytodienoic acid thus obtained was not optically pure but a mixture of enantiomers in a ratio of 82∶18. The first paper in this series is Reference 1.  相似文献   

9.
Gardner HW  Hou CT  Weisleder D  Brown W 《Lipids》2000,35(10):1055-1060
Clavibacter sp. ALA2 transformed linoleic acid into a variety of oxylipins. In previous work, three novel fatty acids were identified, (9Z)-12,13,17-trihydroxy-9-octadecenoic acid and two tetrahydrofuran-(di)hydroxy fatty acids. In this report, we confirm the structures of the tetrahydrofuran-(di)hydroxy fatty acids by nuclear magnetic resonance as (9Z)-12-hydroxy-13,16-epoxy-9-octadecenoic acid and (9Z)-7,12-dihydroxy-13,16-epoxy-9-octadecenoic acid. Three other products of the biotransformation were identified as novel heterobicyclic fatty acids, (9Z)-12,17;13,17-diepoxy-9-octadecenoic acid, (9Z)-7-hydroxy-12,17;13,17-diepoxy-9-octadecenoic acid, and (9Z)-12,17;13,17-diepoxy-16-hydroxy-9-octadecenoic acid. Thus, Clavibacter ALA2 effectively oxidized linoleic acid at C-7,-12,-13,-16, and/or-17.  相似文献   

10.
Bacillus megaterium ALA2 produces many oxygenated FA from linoleic acid: 12,13-dihydroxy-9(Z)-octadecenoic acid; 12,13,17-trihydroxy-9(Z)-octadecenoic acid; 12,13,16-trihydroxy-9(Z)-octadecenoic acid; 12-hydroxy-13,16-epoxy-9 (Z)-octadecenoic acid; and 12,17;13,17-diepoxy-16-hydroxy-9 (Z)-octadecenoic acid. Recently, we studied the monooxygenase system of B. megaterium ALA2 by comparing its palmitic acid oxidation products with those of the well-studied catalytically self-sufficient P450 monooxygenase of B. megaterium ATCC 14581 (NRRL B-3712) and of B. subtilis strain 168 (NRRI B-4219). We found that their oxidation products are identical, indicating that their monooxygenase systems (hydroxylation) are similar. Now, we report that strain ALA2 epoxidizes linoleic acid to 12,13-epoxy-9(Z)-octadecenoic acid and 9,10-epoxy-12 (Z)-octadecenoic acid, the initial products in the linoleic acid oxidation. The epoxidation enzyme did not oxidize specific double bond of the linoleic acid. The epoxidation activity of strain ALA2 was compared with the above-mentioned two Bacillus strains. These two Bacillus strain also produced 12,13-expoxy-9 (Z)-octadecenoic acid and 9,10-epoxy-12(Z)-octadecenoic acid, indicating that their epoxidation enzyme systems might be similar. The ratios of epoxy FA production by these three strains (A1 A2, NRRI B-3712, and NRRI B-4219) were, respectively, 5.56∶0.66∶0.18 for 12,13-epoxy-9(Z)-octadecenoic acid and 2.43∶0.41∶0.57 for 9,10-epoxy-12(Z)-octadecenoic acid per 50 mL medium per 48 h.  相似文献   

11.
Reduction of methyl 8-hydroxy-11-E/Z-octadecen-9-ynoate (1) with zinc in either aqueous n-propanol or water under concomitant ultrasound irradiation furnished a mixture of methyl 8-hydroxy-9Z,11E-octadecadienoate (3a) and methyl 8-hydroxy-9Z, 11Z-octadecadienoate (3b) (96% yield). Reduction of methyl 8-oxo-11-E/Z-octadecen-9-ynoate (2) under similar conditions gave methyl 8-oxo-10-Z-octadecenoate exclusively (4, 70%). The latter compound was epoxidized and converted to a C18 furanoid fatty ester (6, methyl 8,11-epoxy-8,10-octadecadienoate) in 70% yield.  相似文献   

12.
Methyl 11(R), 12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate (threo isomer) was generated from linoleic acid by the sequential action of an enzyme and two chemical reagents. Linoleic acid was treated with lipoxygenase to yield its corresponding hydroperoxide [13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid]. After methylation with CH2N2, the hydroperoxide was treated with titanium (IV) isopropoxide [Ti(O-i-Pr)4] at 5°C for 1 h. The products were separated by normal-phase high-performance liquid chromatography and characterized with gas chromatography-mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Approximately 30% of the product was methyl 13(S)-hydroxy-9(Z), 11(E)-octadecadienoate. Over 60% of the isolated product was methyl 11(R), 12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate. After quenching Ti(O-i-Pr)4 with water, the spent catalyst could be removed from the fatty products by partitioning between CH2Cl2 and water. These results demonstrate that Ti(O-i-Pr)4 selectively promotes the formation of an α-epoxide with the threo configuration. It was critically important to start with dry methyl 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoate because the presence of small amounts of water in the reaction medium resulted in the complete hydrolysis of epoxy alcohol to trihydroxy products.  相似文献   

13.
The metabolism of 13 S-hydroperoxy-9Z,11E,15Z-octadecatrienoic acid was investigated in a crude enzyme extract from mung bean seedlings (Phaseolus radiatus L.). Hydroperoxide-metabolizing activity was mainly due to a hydroperoxide lyase and, to a lesser extent, to an allene oxide synthase and a peroxygenase. Oxylipins originating from hydrolysis and cyclization of the allene oxide synthase product 12,13-epoxy-9Z,11,15Z-octadecatrienoic acid and from peroxygenase catalysis were identified by high-performance liquid chromatography (HPLC) particle beam-mass spectrometry (PB-MS) and quantified by normal-phase HPLC with an evaporative light-scattering detector (ELSD). An advantage of this methodology was the possibility to avoid extensive derivatization procedures commonly used for the gas chromatographic analysis of oxylipins. Owing to a comparable sample inlet system, the ELSD served an important analytical pilot function for the PB-MS: Qualitatively identical chromatographic patterns were obtained with both detection systems. The HPLC system enabled the separation of methyl 12-oxo-phytodienoate, methyl 11-hydroxy-12-oxo-9Z,15Z-octadecadienoate, methyl 12-oxo-13-hydroxy-9Z,15Z-octadecadienoate, methyl 9-hydroxy-12-oxo-10E,15Z-octadecadienoate, methyl 13-hydroxy-9Z,11E,15Z-octadecatrienoate, methyl 15,16-epoxy-13-hydroxy-9Z,11E,15Z-octadecatrienoate, and methyl 13-hydroperoxy-9Z,11E,15Z-octadecatrienoate on a Lichrospher DIOL column within 33 min. Compared with a diode array detector, the ELSD proved to be more sensitive, in the case of methyl 12-oxo-13-hydroxy-9Z, 15Z-octadecadienoate by a factor of about 15. In addition, volatile metabolites were analyzed by capillary gas chromatography. The yield of the hydroperoxide lyase product 2E-hexenal was 49%, whereas the sum of oxylipins reached about 15%.  相似文献   

14.
Clavibacter sp. ALA2 converts linoleic acid into many novel oxygenated products including hydroxy FA and tetrahydrofuranyl unsaturated FA (THFA). One of them was tentatively identified by GC-MS as 12,13,16-trihydroxy-9(Z)-octadecenoic acid (12,13,16-THOA) (Hou, C.T., H.W. Gardner, and W. Brown, J Am. Oil Chem. Soc. 78∶1167–1169, 2001). We have separated and purified 12,13,16-THOA from its isomer, 12,13,17-THOA, by silica gel column chromatography and by preparative TLC. Its structure was then confirmed by proton and 13C NMR analyses. Purified 12,13,16-THOA was used as a substrate to study the biosynthesis of THFA. Within 24 h of incubation, cells of strain ALA2 converted 12,13,16-THOA to both 12-hydroxy-13,16-epoxy-9(Z)-octadecenoic acid (12-hydroxy-THFA) and 7,12-dihydroxy-13,16-epoxy-9(Z)-octadecenoic acid (7,12-dihydroxy-THFA). The relative abundance of 7,12-dihydroxy-THFA increased with incubation time, whereas that of 12,13,16-THOA and of 12-hydroxy-THFA decreased. Therefore, the biosynthetic pathway of THFA from linoleic acid by strain ALA2 is as follows: linoleic acid→12,13-dihydroxy-9(Z)-octadecenoic acid→12,13,16-THOA→12-hydroxy-THEA→7,12-dihydroxy-THFA.  相似文献   

15.
The oxylipin chemistry of the temperate red alga Polyneura latissima has been investigated. The structures of three novel oxylipins, 8-[1′(Z),3′(Z),6′(Z)-dodecatriene-1′-oxyl-5(Z),7(E)-octadienoic acid, 7(S *)-hydroxy-8(S *),9(S *)-epoxy-5(Z), 11(Z),14(Z)-eicosatrienoic acid, 7(R *)-hydroxy-8(S *), 9(S *)-epoxy-5(Z), 11(Z),14(Z)-eicosatrienoic acid, together with two known eicosanoids, 9(S)-hydroxy-5(Z), 7(E), 11(Z), 14(Z)-eicosatetraenoic acid, and 9, 15-dihydroxy-5(Z),7(E),11(Z),13(E)-eicosatetraenoic acid, were elucidated by spectroscopic methods and chemical degradation. The oxygenation pattern of these oxylipins suggests that P. latissima metabolizes polyunsaturated fatty acids via a 9(S)-lipoxygenase.  相似文献   

16.
One of the main compounds formed from 13L-hydroperoxy-9cis,11trans-octadecadienoic acid anaerobically at 100 C in aqueous ethanol was found to bethreo-11-hydroxy-12,13-epoxy-9-octadecenoic acid. The major part (ca. 90%) of this compound was formed from the fatty acid hydroperoxide in a reaction involvingcis-addition to the Δ11 double bond of the proximally linked hydroperoxide oxygen and hydroxyl ion or hydroxyl radical from the solvent. A small part (ca. 10%) was formed bycis-addition of the two hydroperoxide oxygens to the Δ11 double bond. 11-Hydroxy-12,13-epoxy-9-octadecenoic acid and its isomer, tentatively identified as 11-hydroxy-9,10-epoxy-12-octadecenoic acid, also were isolated from a sample of autoxidized linoleic acid.  相似文献   

17.
Incubation of [1-14C]linoleic acid with an enzyme preparation obtained from the red algaLithothamnion corallioides Crouan resulted in the formation of 11-hydroxy-9(Z),12(Z)-octadecadienoic acid as well as smaller amounts of 9-hydroxy-10(E),12(Z)-octadecadienoic acid, 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 11-keto-9(Z),12(Z)-octadecadienoic acid. Steric analysis showed that the 11-hydroxyoctadecadienoic acid had the (R) configuration. The 9- and 13-hydroxyoctadecadienoic acids were not optically pure, but were due to mixtures of 75% (R) and 25% (S) enantiomers (9-hydroxyoctadecadienoate), and 24% (R) and 76% (S) enantiomers (13-hydroxy-octadecadienoate). 11-Hydroxyoctadecadienoic acid was unstable at acidic pH. In acidified water, equal parts of 9(R,S)-hydroxy-10(E),12(Z)-octadecadienoate and 13(R,S)-hydroxy-9(Z),11(E)-octadecadienoate, plus smaller amounts of the corresponding (E),(E) isomers were produced. In aprotic solvents, acid treatment resulted in dehydration and in the formation of equal amounts of 8,10,12- and 9,11,13-octadecatrienoates. The enzymatic conversion of linoleic acid into the hydroxyoctadecadienoic acids and the ketooctadecadienoic acid was oxygen-dependent; however, inhibitor experiments indicated that neither lipoxygenase nor cytochrome P-450 were involved in the conversion. This conclusion was supported by experiments with18O2 and H2 18O, which demonstrated that the hydroxyl oxygen of the hydroxy-octadecadienoic acids and the keto oxygen of the 11-ketooctadecadienoic acid were derived from water and not from molecular oxygen. The term “oxylipin” was introduced recently (ref. 1) as an encompassing term for oxygenated compounds which are formed from fatty acids by reaction(s) involving at least one step of mono- or dixoygenase-catalyzed oxygenation.  相似文献   

18.
Niobium (V) ethoxide [Nb(OC2H5)5] catalyzed the rearrangement of methyl 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoate (Me-HPODE) to epoxy hydroxy isomers. At low temperature (5°C) in aprotic solvent, Me-HPODE was converted to the diastereomeric α, β-epoxy alcohols, methyl 11(R,S),12(R,S)-epoxy-13(S)-hydroxy-9(Z)octadecenoate. These products are referred to as oxylipids and structurally resemble those obtained from the vanadium- and epoxygenase-catalyzed rearrangement of Me-HPODE but are distinct from products obtained from ferrous iron-, hematin-, and hemoglobin-catalyzed rearrangements. Because the product of the niobium-catalyzed rearrangement of Me-HPODE was predominantly the erythro diastereomer, the rearrangement is distinguished from that produced by a titanium catalyst, in which the threo diastereomer [methyl 11(R), 12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate] predominates, and from that produced by a vanadium catalyst, in which both diastereomers are produced in equal proportion. The synthesis of alcohol epoxide by Nb(OC2H5)5 was inhibited by traces of water, but inclusion of molecular sieves in the reaction medium did not improve yield, as the alcohol epoxide rearranged to ketonic materials.  相似文献   

19.
A soybean extract or an ethanolic solution of cysteine and ferric chloride catalyzed the conversion of 13-L-hydroperoxy-cis-9,trans-11-octadecadienoic acid to numerous products among which wastrans-12,13-epoxy-9-hydroperoxy-trans-10-octadecenoic acid. When this fatty acid was treated further with the cysteine-ferric chloride solution, 9-hydroxy-12,13-epoxy-10-octadecenoic and 9-oxo-12,13-epoxy-10-octadecenoic acids were formed. Thus,trans-12,13-epoxy-9-hydroperoxy-trans-10-octadecenoic acid probably is an intermediate in the formation of the latter two compounds. Additionally, theerythro andthreo isomers oftrans-12,13-epoxy-11-hydroperoxy-cis-9-octadecenoic acid tenatatively were identified as products. Presented in part at the 13th World Congress, International Society for Fat Research, Marseilles, France, August 30-September 4, 1976, and the AOCS Meeting, Chicago, September 1976.  相似文献   

20.
Hamberg M 《Lipids》1999,34(11):1131-1142
[1-14C]Linoleic acid was incubated with a whole homogenate preparation of potato leaves (Solanum tuberosum 1., var. Bintje). The methyl-esterified product was subjected to straight-phase high-performance liquid chromatography and was found to contain four major radioactive oxidation products, i.e., the epoxy alcohols methyl 10(S), 11(S)-epoxy-9(S)-hydroxy-12(Z)-octadecenoate (14% of the recovered radioactivity) and methyl 12(R), 13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoate (14%), and the trihydroxy derivatives methyl 9(S), 10(S), 11(R)-trihydroxy-12(Z)-octadecenoate (18%) and methyl 9(S), 12(S), 13(S)-trihydroxy-10(E)-octadecenoate (30%). The structures and stereochemical configurations of these oxylipins were determined by chemical and spectral methods using the authentic compounds as references. Incubations performed in the presence of glutathione peroxidase revealed that lipoxygenase activity of potato leaves generated the 9- and 13-hydroperoxides of linoleic acid in a ratio of 95∶5. Separate incubations of these hydroperoxides showed that linoleic acid 9(S)-hydroperoxide was metabolized into epoxy alcohols by particle-bound epoxy alcohol synthase activity, whereas the 13-hydroperoxide was metabolized into α- and γ-ketols by a particle-bound allene oxide synthase. It was concluded that the main pathway of linoleic acid metabolism in potato leaves involved 9-lipoxygenase-catalyzed oxygenation into linoleic acid 9(S)-hydroperoxide followed by rapid conversion of this hydroperoxide into epoxy alcohols and a slower, epoxide hydrolase-catalyzed conversion of the epoxy alcohols into trihydroxyoctadecenoates. Trihydroxy derivatives of linoleic and linolenic acids have previously been reported to be growth-inhibitory to plant-pathogenic fungi, and a role of the new pathway of linoleic acid oxidation in defense reactions against pathogens is conceivable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号