首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract. A graph-theoretic approach to study the complexity of Boolean functions was initiated by Pudlák, Rödl, and Savický [PRS] by defining models of computation on graphs. These models generalize well-known models of Boolean complexity such as circuits, branching programs, and two-party communication complexity. A Boolean function f is called a 2-slice function if it evaluates to zero on inputs with less than two 1's and evaluates to one on inputs with more than two 1's. On inputs with exactly two 1's f may be nontrivially defined. There is a natural correspondence between 2-slice functions and graphs. Using the framework of graph complexity, we show that sufficiently strong superlinear monotone lower bounds for the very special class of {2-slice functions} would imply superpolynomial lower bounds over a complete basis for certain functions derived from them. We prove, for instance, that a lower bound of n 1+Ω(1) on the (monotone) formula size of an explicit 2-slice function f on n variables would imply a 2 Ω(?) lower bound on the formula size over a complete basis of another explicit function g on l variables, where l=Θ( log n) . We also consider lower bound questions for depth-3 bipartite graph complexity. We prove a weak lower bound on this measure using algebraic methods. For instance, our result gives a lower bound of Ω(( log n) 3 / ( log log n) 5 ) for bipartite graphs arising from Hadamard matrices, such as the Paley-type bipartite graphs. Lower bounds for depth-3 bipartite graph complexity are motivated by two significant applications: (i) a lower bound of n Ω(1) on the depth-3 complexity of an explicit n -vertex bipartite graph would yield superlinear size lower bounds on log-depth Boolean circuits for an explicit function, and (ii) a lower bound of $\exp((\log \log n)^{\omega(1)})$ would give an explicit language outside the class Σ 2 cc of the two-party communication complexity as defined by Babai, Frankl, and Simon [BFS]. Our lower bound proof is based on sign-representing polynomials for DNFs and lower bounds on ranks of ±1 matrices even after being subjected to sign-preserving changes to their entries. For the former, we use a result of Nisan and Szegedy [NS] and an idea from a recent result of Klivans and Servedio [KS]. For the latter, we use a recent remarkable lower bound due to Forster [F1].  相似文献   

3.
   Abstract. A graph-theoretic approach to study the complexity of Boolean functions was initiated by Pudlák, R?dl, and Savicky [PRS] by defining models of computation on graphs. These models generalize well-known models of Boolean complexity such as circuits, branching programs, and two-party communication complexity. A Boolean function f is called a 2-slice function if it evaluates to zero on inputs with less than two 1's and evaluates to one on inputs with more than two 1's. On inputs with exactly two 1's f may be nontrivially defined. There is a natural correspondence between 2-slice functions and graphs. Using the framework of graph complexity, we show that sufficiently strong superlinear monotone lower bounds for the very special class of {2-slice functions} would imply superpolynomial lower bounds over a complete basis for certain functions derived from them. We prove, for instance, that a lower bound of n 1+Ω(1) on the (monotone) formula size of an explicit 2-slice function f on n variables would imply a 2 Ω(ℓ) lower bound on the formula size over a complete basis of another explicit function g on l variables, where l=Θ( log n) . We also consider lower bound questions for depth-3 bipartite graph complexity. We prove a weak lower bound on this measure using algebraic methods. For instance, our result gives a lower bound of Ω(( log n) 3 / ( log log n) 5 ) for bipartite graphs arising from Hadamard matrices, such as the Paley-type bipartite graphs. Lower bounds for depth-3 bipartite graph complexity are motivated by two significant applications: (i) a lower bound of n Ω(1) on the depth-3 complexity of an explicit n -vertex bipartite graph would yield superlinear size lower bounds on log-depth Boolean circuits for an explicit function, and (ii) a lower bound of
would give an explicit language outside the class Σ 2 cc of the two-party communication complexity as defined by Babai, Frankl, and Simon [BFS]. Our lower bound proof is based on sign-representing polynomials for DNFs and lower bounds on ranks of ±1 matrices even after being subjected to sign-preserving changes to their entries. For the former, we use a result of Nisan and Szegedy [NS] and an idea from a recent result of Klivans and Servedio [KS]. For the latter, we use a recent remarkable lower bound due to Forster [F1].  相似文献   

4.
We study the problem of computing canonical forms for graphs and hypergraphs under Abelian group action and show tight complexity bounds. Our approach is algebraic. We transform the problem of computing canonical forms for graphs to the problem of computing canonical forms for associated algebraic structures, and we develop parallel algorithms for these associated problems.
  1. In our first result we show that the problem of computing canonical labelings for hypergraphs of color class size 2 is logspace Turing equivalent to solving a system of linear equations over the field $\mathbb {F} _{2}$ . This implies a deterministic NC 2 algorithm for the problem.
  2. Similarly, we show that the problem of canonical labeling graphs and hypergraphs under arbitrary Abelian permutation group action is fairly well characterized by the problem of computing the integer determinant. In particular, this yields deterministic NC 3 and randomized NC 2 algorithms for the problem.
  相似文献   

5.
The Generic Graph Machine (GGM) model is a Turing machine-like model for expressing generic computations working directly on graph structures. In this paper we present a number of observations concerning the expressiveness and complexity of GGMs. Our results comprise the following: (i) an intrinsic characterization of the pairs of graphs that are an input—output pair of some GGM; (ii) a comparison between GGM complexity and TM complexity; and (iii) a detailed discussion on the connections between the GGM model and other generic computation models considered in the literature, in particular the generic complexity classes of Abiteboul and Vianu, and the Database Method Schemes of Denninghoff and Vianu. Received September 1995, and in final form August 1997.  相似文献   

6.
基于程序图的McCabe结构复杂性度量   总被引:1,自引:1,他引:1  
程序复杂性度量是软件工程的一个研究领域 ,不同的软件设计方法可导致不同的程序复杂性。本文讨论了利用程序图进行 Mc Cabe结构复杂性度量的方法。  相似文献   

7.
Two natural classes of counting problems that are interreducible under approximation-preserving reductions are: (i) those that admit a particular kind of efficient approximation algorithm known as an “FPRAS”, and (ii) those that are complete for #P with respect to approximation-preserving reducibility. We describe and investigate not only these two classes but also a third class, of intermediate complexity, that is not known to be identical to (i) or (ii). The third class can be characterised as the hardest problems in a logically defined subclass of #P.  相似文献   

8.
Two natural classes of counting problems that are interreducible under approximation-preserving reductions are: (i) those that admit a particular kind of efficient approximation algorithm known as an FPRAS, and (ii) those that are complete for #P with respect to approximation-preserving reducibility. We describe and investigate not only these two classes but also a third class, of intermediate complexity, that is not known to be identical to (i) or (ii). The third class can be characterised as the hardest problems in a logically defined subclass of #P.  相似文献   

9.
In this paper we are interested in quantified propositional formulas in conjunctive normal form with “clauses” of arbitrary shapes. i.e., consisting of applying arbitrary relations to variables. We study the complexity of the evaluation problem, the model checking problem, the equivalence problem, and the counting problem for such formulas, both with and without a bound on the number of quantifier alternations. For each of these computational goals we get full complexity classifications: We determine the complexity of each of these problems depending on the set of relations allowed in the input formulas. Thus, on the one hand we exhibit syntactic restrictions of the original problems that are still computationally hard, and on the other hand we identify non-trivial subcases that admit efficient algorithms.  相似文献   

10.
Li  Jinfeng  Liu  Weifeng  Zhou  Yicong  Tao  Dapeng  Nie  Liqiang 《Neural Processing Letters》2020,51(1):23-39
Neural Processing Letters - Domain Adaptation aims at utilizing source data to establish an exact model for a related but different target domain. In recent years, many effective models have been...  相似文献   

11.
We consider graph drawings in which vertices are assigned to layers and edges are drawn as straight line-segments between vertices on adjacent layers. We prove that graphs admitting crossing-free h-layer drawings (for fixed h) have bounded pathwidth. We then use a path decomposition as the basis for a linear-time algorithm to decide if a graph has a crossing-free h-layer drawing (for fixed h). This algorithm is extended to solve related problems, including allowing at most k crossings, or removing at most r edges to leave a crossing-free drawing (for fixed k or r). If the number of crossings or deleted edges is a non-fixed parameter then these problems are NP-complete. For each setting, we can also permit downward drawings of directed graphs and drawings in which edges may span multiple layers, in which case either the total span or the maximum span of edges can be minimized. In contrast to the Sugiyama method for layered graph drawing, our algorithms do not assume a preassignment of the vertices to layers. Research initiated at the International Workshop on Fixed Parameter Tractability in Graph Drawing, Bellairs Research Institute of McGill University, Holetown, Barbados, Feb. 9–16, 2001, organized by S. Whitesides. Research of Canada-based authors is supported by NSERC; research of Quebec-based authors is also supported by a grant from FCAR. Research of D.R. Wood completed while visiting McGill University. Research of G. Liotta supported by CNR and MURST.  相似文献   

12.
We present a framework for computing with input data specified by intervals, representing uncertainty in the values of the input parameters. To compute a solution, the algorithm can query the input parameters that yield more refined estimates in the form of sub-intervals and the objective is to minimize the number of queries. The previous approaches address the scenario where every query returns an exact value. Our framework is more general as it can deal with a wider variety of inputs and query responses and we establish interesting relationships between them that have not been investigated previously. Although some of the approaches of the previous restricted models can be adapted to the more general model, we require more sophisticated techniques for the analysis and we also obtain improved algorithms for the previous model. We address selection problems in the generalized model and show that there exist 2-update competitive algorithms that do not depend on the lengths or distribution of the sub-intervals and hold against the worst case adversary. We also obtain similar bounds on the competitive ratio for the MST problem in graphs.  相似文献   

13.
We introduce a class of counting problems that arise naturally in equational matching and investigate their computational complexity. If E is an equational theory, then #E-Matching is the problem of counting the number of most general E-matchers of two given terms. #E-Matching is a well-defined algorithmic problem for every finitary equational theory. Moreover, it captures more accurately the computational difficulties associated with finding minimal complete sets of E-matchers than the corresponding decision problem for E-matching does.In 1979, L. Valiant developed a computational model for measuring the complexity of counting problems and demonstrated the existence of #P-complete problems, i.e., counting problems that are complete for counting non-deterministic Turing machines of polynomial-time complexity. Using the theory of #P-completeness, we analyze the computational complexity of #E-matching for several important equational theories E. We establish that if E is one of the equational theories A, C, AC, I, U, ACI, Set, ACU, or ACIU, then #E-Matching is a #P-complete problem. We also show that there are equational theories, such as the restriction of AC-matching to linear terms, for which the underlying decision matching problem is solvable in polynomial time, while the associated counting matching problem is #P-complete.  相似文献   

14.
The Induced Graph Matching problem asks to find \(k\) disjoint induced subgraphs isomorphic to a given graph  \(H\) in a given graph \(G\) such that there are no edges between vertices of different subgraphs. This problem generalizes the classical Independent Set and Induced Matching problems, among several other problems. We show that Induced Graph Matching is fixed-parameter tractable in \(k\) on claw-free graphs when \(H\) is a fixed connected graph, and even admits a polynomial kernel when  \(H\) is a complete graph. Both results rely on a new, strong, and generic algorithmic structure theorem for claw-free graphs. Complementing the above positive results, we prove \(\mathsf {W}[1]\) -hardness of Induced Graph Matching on graphs excluding \(K_{1,4}\) as an induced subgraph, for any fixed complete graph \(H\) . In particular, we show that Independent Set is \(\mathsf {W}[1]\) -hard on \(K_{1,4}\) -free graphs. Finally, we consider the complexity of Induced Graph Matching on a large subclass of claw-free graphs, namely on proper circular-arc graphs. We show that the problem is either polynomial-time solvable or \(\mathsf {NP}\) -complete, depending on the connectivity of \(H\) and the structure of \(G\) .  相似文献   

15.
We present approximation algorithms for two closely related bicriteria problems. Given a graph with two weight functions on the edges, length and cost, we consider the Bounded-Diameter Minimum-Cost Steiner Tree (BDMST) problem and the Bounded-Diameter Minimum-Cardinality Edge Addition (BDMC) problem. We present a parameterized approximation algorithm for the BDMST problem with a bicriteria approximation ratio of (O(p log s/log p),O(log s/log p)) where the first factor gives the relaxation on the diameter bound, the second factor is the cost-approximation factor, s is the number of required nodes and p, 1 ≤ p < s, is an input parameter. The parameter p allows a trade-off between the two approximation factors. This is the first improvement of the cost-approximation factor since the scheme proposed by Marathe et al. [9]. For example, p can be set to sα to obtain an (O(sα),O(1)) approximation for a constant α. The algorithm is very simple and is suitable for distributed implementations. We also present the first algorithm for Bounded-Hops Minimum-Cost Steiner Tree for complete graphs with triangle inequality. This model includes graphs defined by points in a Euclidean space of any dimension. The algorithm guarantees an approximation ratio of (O(logds),O(logds)) where d is the bound on the diameter. This is an improvement over the general-case approximation when d is comparable with s. For example, the ratio is (O(1),O(1)) for any d = sα where α is a constant between 0 and 1. For the case where the number of terminals is a constant and all edge lengths are unit, we have a polynomial-time algorithm. This can be extended to any length function providing a (1 + ε) in the approximation with ε showing up in the time complexity of the algorithm. For another special case, where the cost of any edge is either 1 or 0 and the length of each edge is positive, an algorithm with approximation ratio of (O(log(c log s)), O(log(c log s))) is presented, where c is the cost of the optimal solution. This approximation is a significant improvement over (O(log s),O(log s)) when the cost of the solution c is much smaller than the number of terminals s. This is useful when an existing multicast network is to be modified to accommodate new terminals with the addition of as few new edges as possible. We also propose an approximation algorithm for the Bounded-Diameter Minimum-Cardinality Edge Addition problem, which achieves an O(log n) approximation while relaxing the diameter bound by 2. While this ratio is the same as the one claimed in [3], this algorithm is simple and combinatorial rather than based on the Linear Program solution and can be readily modified for a distributed implementation.  相似文献   

16.
Given an undirected and edge-weighted graph G together with a set of ordered vertex-pairs, called st-pairs, we consider two problems of finding an orientation of all edges in G: min-sum orientation is to minimize the sum of the shortest directed distances between all st-pairs; and min-max orientation is to minimize the maximum shortest directed distance among all st-pairs. Note that these shortest directed paths for st-pairs are not necessarily edge-disjoint. In this paper, we first show that both problems are strongly NP-hard for planar graphs even if all edge-weights are identical, and that both problems can be solved in polynomial time for cycles. We then consider the problems restricted to cacti, which form a graph class that contains trees and cycles but is a subclass of planar graphs. Then, min-sum orientation is solvable in polynomial time, whereas min-max orientation remains NP-hard even for two st-pairs. However, based on LP-relaxation, we present a polynomial-time 2-approximation algorithm for min-max orientation. Finally, we give a fully polynomial-time approximation scheme (FPTAS) for min-max orientation on cacti if the number of st-pairs is a fixed constant.  相似文献   

17.
18.
19.
In this paper, a compressed membership problem for finite automata, both deterministic (DFAs) and non-deterministic (NFAs), with compressed transition labels is studied. The compression is represented by straight-line programs (SLPs), i.e. context-free grammars generating exactly one string. A novel technique of dealing with SLPs is employed: the SLPs are recompressed, so that substrings of the input word are encoded in SLPs labelling the transitions of the NFA (DFA) in the same way, as in the SLP representing the input text. To this end, the SLPs are locally decompressed and then recompressed in a uniform way. Furthermore, in order to reflect the recompression in the NFA, we need to modify it only a little, in particular its size stays polynomial in the input size. Using this technique it is shown that the compressed membership for NFA with compressed labels is in NP, thus confirming the conjecture of Plandowski and Rytter (Jewels Are Forever, pp. 262–272, Springer, Berlin, 1999) and extending the partial result of Lohrey and Mathissen (in CSR, LNCS, vol. 6651, pp. 275–288, Springer, Berlin, 2011); as this problem is known to be NP-hard (in Plandowski and Rytter, Jewels Are Forever, pp. 262–272, Springer, Berlin, 1999), we settle its exact computational complexity. Moreover, the same technique applied to the compressed membership for DFA with compressed labels yields that this problem is in P, and this problem is known to be P-hard (in Markey and Schnoebelen, Inf. Process. Lett. 90(1):3–6, 2004; Beaudry et al., SIAM J. Comput. 26(1):138–152, 1997).  相似文献   

20.
We give algorithms for linear and for general context matching and discuss how the performance in the general case can be improved through the use of information derived from approximations that can be computed in polynomial time. We investigate the complexity of context matching with respect to the stratification of variable occurrences, where our main results are that stratified context matching is NP-complete, but that stratified simultaneous monadic context matching is in P. SSMCM is equivalent to stratified simultaneous word matching. We also show that the linear and the Comon-restricted cases are in~P and of time complexity O(n3), and that varity 2 context matching, where variables occur at most twice, is NP-complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号