首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In BIPV design (Building Integrated PV) with crystalline silicon (c-Si) solar cells, ventilation is important in order to keep cells as cool as possible. To allow good ventilation it is therefore generally preferable to mount the modules separated from the existing roof. In the case of sloped roofs, the modules are superimposed onto the existing roof and for flat roofs separated tilted mounting structures designed to withstand wind loads are used instead, but both are not real building integrations.In this paper we analyse the behaviour and the energy yield of a 15.36 kWp PV system based on flexible triple junction amorphous silicon modules laminated together with a single ply roofing system.The PV plant has been integrated on a flat roof of a professional school located south of Switzerland. A significant part of the data analysis is done in comparison with three small open-rack plants (reference plants) installed near the integrated plant.An important result was that the thermally insulated nearly horizontal modules showed temperatures higher than for modules mounted on an open-rack structure, especially for sunny days. This created higher power losses due to negative temperature coefficients. On the other hand, the higher temperature reached the level where the main degradation mechanism of a-Si modules could be reversed and better thermal annealing could be observed. This conclusion was arrived at after a direct performance comparison of the thermally insulated plant and the open-rack a-Si reference plant, which has the same module and orientation as the main plant.In order to better understand the thermally insulated nearly horizontal plant behaviour, we analysed and quantified the irradiation difference and optical losses with respect to a 20° tilted open-rack c-Si power plant. Optical losses for nearly horizontal modules were significant during the winter, partially affecting their low performance.As a main result, the final energy yield of the thermally insulated a-Si plant was almost comparable to a 20° tilted open-rack c-Si power plant, despite the lower irradiance and higher reflection losses with respect to the latter.Accordingly, compared to c-Si modules, the a-Si technology represents a better choice for thermal insulated BIPV.  相似文献   

2.
A systematic investigation has been made on annual accumulated generated PV power from different solar arrays consisting of three kinds of silicon-based solar cells. To clarify seasonal output power variations with temperature in c-Si and a-Si cells might be an important issue for the operations of PV system. It has been shown from the results that electric output power from a-Si array in summer is 20% larger than that from c-Si. On the other hand, in winter, this scene should be reverted. However, output power from c-Si array is only 5% larger than that from a-Si. The analyzed data also shows that annual accumulated electric power generated from a-Si array corresponds to 90% of its nominal efficiency in the year. While in case of c-Si array, this ratio is about 84%.  相似文献   

3.
The impact of PV surface orientation and inclination on grid-connected photovoltaic system performance under maritime climates was investigated using validated TRNSYS simulations. Insolation, PV output, PV efficiency, inverter efficiency, system efficiency, performance ratio (PR) and PV savings were estimated annually, seasonally and on monthly bases for various surface inclinations and orientations. Incident insolation and PV output were maximum for a surface with inclination 30° facing due south and minimum for a vertical surface with orientation 90° east or west from south. The monthly optimum collection angle maximising incident insolation varied from 10° to 70°. For the particular location and system studied, the maximum annual PV efficiency, the inverter efficiency, the PR and the system efficiency were for a south-facing surface with an inclination of 20°. For a horizontal surface, the monthly variation of system parameters was significant over a year. For time-dependent tariff rates, the annual PV savings were higher for a system oriented with same orientation towards the west than east from south while for constants tariff rates, the PV savings was the same for east or west orientation from south.  相似文献   

4.
The behavior of amorphous silicon∥micro crystalline silicon (a-Si∥μc-Si) tandem-type photovoltaic (PV) module is complex because the output current is limited by the lower current component cell. Also, the outdoor behaviors are not fully understood. The impact of environment factors on solar cell parameters of a-Si∥μc-Si PV module was quantitatively analyzed and the module was compared with other silicon-based PV modules (single crystalline silicon (sc-Si) and amorphous silicon (a-Si)). The contour maps of solar cell parameters were constructed as a function of irradiance and module temperature. The contour map of a-Si∥μc-Si PV modules is similar to that of a-Si modules. The results imply that output characteristics of a-Si∥μc-Si PV modules are mainly influenced by the a-Si top cell. Furthermore, the efficiency of a-Si∥μc-Si PV modules was compared other solar cell parameters and the contour map of efficiency is similar to that of fill factor.  相似文献   

5.
The thermal recovery effect from the light-induced degradation under the sunlight is experimentally investigated on the amorphous silicon photovoltaic module (a-Si PV module) for installing directly to the roof flames of wooden houses. To enhance the recovery effect, the heat-insulating material is attached to the back side of the module for increasing the module temperature under the sunlight: the heat-insulated module.The generated power from the heat-insulated module is compared with that from the normal module (without the heat-insulating material) for 2 yr, and it has been cleared that the generated power normalized at 25°C from the heat-insulated module is approximately 7.3% higher than that from the normal one with the average temperature increase of 4.2°C under the sunlight.  相似文献   

6.
Simulation is of primal importance in the prediction of the produced power and automatic fault detection in PV grid-connected systems (PVGCS). The accuracy of simulation results depends on the models used for main components of the PV system, especially for the PV module. The present paper compares two PV array models, the five-parameter model (5PM) and the Sandia Array Performance Model (SAPM). Five different algorithms are used for estimating the unknown parameters of both PV models in order to see how they affect the accuracy of simulations in reproducing the outdoor behavior of three PVGCS. The arrays of the PVGCS are of three different PV module technologies: Crystalline silicon (c-Si), amorphous silicon (a-Si:H) and micromorph silicon (a-Si:H/μc-Si:H).The accuracy of PV module models based on the five algorithms is evaluated by means of the Route Mean Square Error (RMSE) and the Normalized Mean Absolute Error (NMAE), calculated for different weather conditions (clear sky, semi-cloudy and cloudy days). For both models considered in this study, the best accuracy is obtained from simulations using the estimated values of unknown parameters delivered by the ABC algorithm. Where, the maximum error values of RMSE and NMAE stay below 6.61% and 2.66% respectively.  相似文献   

7.
In this paper, an attempt has been made to evaluate and compare the energy matrices of a hybrid photovoltaic thermal (HPVT) water collector under constant collection temperature mode with five different types of PV modules namely c-Si, p-Si, a-Si (thin film), CdTe and CIGS. The analysis is based on overall thermal energy and exergy outputs from HPVT water collector. The temperature dependent electrical efficiency has also been calculated under composite climate of New Delhi, India.It is observed that c-Si PV module is best alternative for production of electrical power. Maximum annual overall thermal energy and exergy is obtained for c-Si PV module. The maximum and minimum EPBT of 1.01 and 0.66 years on energy basis is obtained for c-Si and CIGS respectively, whereas on exergy basis maximum EPBT of 5.72 years is obtained for a-Si and minimum of 3.44 in obtained for CIGS PV module. EPF and LCCE increase with increasing the life time of the system.  相似文献   

8.
V-trough photovoltaic (PV) concentrator systems along with conventional 1-sun PV module is designed and fabricated to assess PV electricity cost ($/W) reduction. V-trough concentrator (2-sun) system is developed for different types of tracking modes: seasonal, one axis north–south and two axes tracking. Three design models based on these tracking modes are used to develop the V-trough for a 2-sun concentration. Commercially available PV modules of different make and types were evaluated for their usability under 2-sun concentration. The V-trough concentrator system with geometric concentration ratio of 2 (2-sun) increases the output power by 44% as compared to PV flat-plate system for passively cooled modules. Design models with lower trough angles gave higher output power because of higher glass transmittivity. PV modules with lower series resistance gave higher gain in output power. The unit cost ($/W) for a V-trough concentrator, based on different design models, is compared with that of a PV flat plate system inclined at latitude angle (Mumbai, φ=19.12°).  相似文献   

9.
We have investigated the electrical energy yield of hydrogenated amorphous silicon (a-Si:H) single-junction and crystalline (c-Si) photovoltaic (PV) rooftop systems operated under distinct four seasons. The impact of the module type and installed tilt angle on the annual electrical energy yield has been monitored and then compared with the data predicted by the computer simulation. Despite a good temperature coefficient and less shading effect of a-Si:H single-junction modules, the energy output gain of the a-Si:H single-junction PV generator is only 2.7% compared to the c-Si PV generator installed using c-Si PV modules. It is inferred that a nominal rated power of the a-Si:H single-junction modules determined by an indoor light soaking test is not suitable for the design of PV systems operated under distinct four seasons. Thus, the nominal rated power of the a-Si:H single-junction PV modules should be determined through a proper outdoor exposure test considering thermal annealing and light soaking effects under various seasonal weather conditions. In addition, it is found that the performance of the Si-based PV rooftop systems operated under distinct four seasons could be improved by simply toggling the tilt angle considering the plane-of-array irradiance and snowfall effect.  相似文献   

10.
For the estimation of energy output from photovoltaic (PV) modules, considering the impact of degradation is essential. In this study, the longtime outdoor performance of various types of silicon-based PV modules [single crystalline Si (sc-Si), multi crystalline Si (mc-Si), amorphous Si (a-Si), a-Si/micro crystalline Si tandem, and a-Si/a-SiGe/a-SiGe three-stack (3-stack)] which were installed at the same outdoor exposure condition in Shiga Prefecture, Japan were investigated using Performance Ratio (PR) as an index of performance of PV modules for ten years from 2000 to 2009. Yearly PR and monthly PR were analyzed and degradation rates (DR) were calculated. The DR was different on the kinds of PV modules from 0.404 to 3.51%/year. The a-Si PV module showed the largest DR and the 3-stack PV module had the least trend to degrade. The analysis of the monthly DR indicated that the high DR of the a-Si PV module was due to the quite large DR in summer, whereas the monthly DR of sc-Si and mc-Si PV modules did not differ much from each other throughout the years.  相似文献   

11.
The performance of a photovoltaic (PV) panel is affected by its orientation and its tilt angle with the horizontal plane. This is because both of these parameters change the amount of solar energy received by the surface of the PV panel. A mathematical model was used to estimate the total solar radiation on the tilted PV surface, and to determine optimum tilt angles for a PV panel installed in Sanliurfa, Turkey. The optimum tilt angles were determined by searching for the values of angles for which the total radiation on the PV surface was maximum for the period studied. The study also investigated the effect of two-axis solar tracking on energy gain compared to a fixed PV panel. This study determined that the monthly optimum tilt angle for a PV panel changes throughout the year with its minimum value as 13° in June and maximum value as 61° in December. The results showed that the gains in the amount of solar radiation throughout the year received by the PV panel mounted at monthly optimum tilt angles with respect to seasonal optimum angles and tilt angel equal to latitude were 1.1% and 3.9%, respectively. Furthermore, daily average of 29.3% gain in total solar radiation results in an daily average of 34.6% gain in generated power with two-axis solar tracking compared to a south facing PV panel fixed at 14° tilt angle on a particular day in July in Sanliurfa, Turkey.  相似文献   

12.
Differences in the outdoor performances of bulk (multi- and single-crystalline Si) and thin-film (amorphous Si(a-Si), a-Si/micro-crystalline Si and a-Si/a-SiGe/a-SiGe) photovoltaic (PV) modules are analyzed. The influence of module temperature and solar spectrum distribution on the PV output is clarified. The PV outputs almost only depend on module temperature in bulk-type Si PV modules while that depend both module temperature and spectrum distribution in thin-film ones. Also, the PV outputs of the bulk-type Si PV modules at most frequent condition at outdoor are lower than that at the standard test condition; in contrast, it was the other way round for thin-film ones.  相似文献   

13.
The influence of temperature and wavelength on electrical parameters of crystalline silicon solar cell and a solar module are presented. At the experimental stand a thick copper plate protected the solar cell from overheating, the plate working as a radiation heat sink, or also as the cell temperature stabilizer during heating it up to 80°C. A decrease of the output power (−0.65%/K), of the fill-factor (−0.2%/K) and of the conversion efficiency (−0.08%/K) of the PV module with the temperature increase has been observed. The spectral characteristic of the open-circuit voltage of the single-crystalline silicon solar cell is also presented. It is shown that the radiation-rate coefficient of the short-circuit current-limit of the solar cell at 28°C is 1.2%/(mW/cm2).  相似文献   

14.
We have investigated the photovoltaic (PV) characteristics of both glow discharge deposited hydrogenated amorphous silicon (a-Si:H) on crystalline silicon (c-Si) in a n+ a-Si:H/undoped a-Si:H/p c-Si type structure, and DC magnetron sputtered a-Si:H in a n-type a-Si:H/p c-Si type solar cell structure. It was found that the PV properties of the solar cells were influenced very strongly by the a-Si/c-Si interface. Properties of strongly interface limited devices were found to be independent of a-Si thickness and c-Si resistivity. A hydrofluoric acid passivation prior to RF glow discharge deposition of a-Si:H increases the short circuit current density from 2.57 to 25.00 mA/cm2 under 1 sun conditions.DC magnetron sputtering of a-Si:H in a Ar/H2 ambient was found to be a controlled way of depositing n type a-Si:H layers on c-Si for solar cells and also a tool to study the PV response with a-Si/c-Si interface variations. 300 Å a-Si sputtered onto 1–10 ω cm p-type c-Si resulted in 10.6% efficient solar cells, without an A/R coating, with an open circuit voltage of 0.55 V and a short circuit current density of 30 mA/cm2 over a 0.3 cm2 area. High frequency capacitance-voltage measurements indicate good junction characteristics with zero bias depletion width in c-Si of 0.65 μm. The properties of the devices have been investigated over a wide range of variables like substrate resistivity, a-Si thickness, and sputtering power. The processing has focused on identifying and studying the conditions that result in an improved a-Si/c-Si interface that leads to better PV properties.  相似文献   

15.
Photovoltaics cost has been declining following a 70% learning curve. Now the challenge is to bring down the cost of solar electricity to make it competitive with conventional sources within the next decade. In the long run, the module efficiencies tend to reach 80% of the champion cell efficiencies. Using a semiempirical methodology, it has been shown earlier that while the triple junction a-Si:H thin film technology is competitive, CIGS and CdTe thin film module technologies are highly competitive and presently offer the best approach for significantly exceeding the cost/performance levels of standard and non-standard crystalline Si PV technologies. Since 2006, the production of thin film solar cell in the U.S. has surpassed that of c-Si. At present, the production of CIGS PV modules lags considerably behind that of CdTe PV modules. This is mainly because of its complexity. Scale-up issues related to various CIGS preparation technologies such as co-evaporation, metallic precursor deposition by magnetron sputtering and non-vacuum techniques such as ink-jet printing, electroplating or doctor-blade technology followed by their selenization/sulfurization are discussed so as to assist the CIGS technology to attain its full potential. Besides the welcome announcements of large volume production, it is essential to achieve the production cost below $1/Wp in the near term and attain production speeds comparable to CdTe production speeds. Comparable production speeds are expected to be achieved within the next decade. This will enable reduction of CIGS module production costs to ∼65¢/Wp that would be comparable to the CdTe module projected production cost. Additionally CIGS will have a higher efficiency premium.  相似文献   

16.
针对以常规方式安装双面光伏组件时组件背面存在一定遮挡会影响其发电量这一情况,通过对双面光伏组件分别安装于固定式光伏支架、平单轴跟踪光伏支架时组件背面有、无遮挡,以及背景反射率不同时双面光伏组件的发电量情况进行分析,结果发现,在双面光伏组件背面无遮挡的前提下,当采用平单轴跟踪光伏支架且地面背景为白色时,双面光伏组件的发电...  相似文献   

17.
Performance of photovoltaic (PV) modules is evaluated under the standard test condition, which rarely meets actual outdoor conditions. Environmental conditions greatly affect the output energy of PV modules. The impact of environmental factors, especially solar spectrum distribution and module temperature, on the outdoor performance of amorphous Si (a-Si) and multicrystalline Si (mc-Si) PV modules is characterized. The results show that the output energy of a-Si modules mainly depends on spectrum distribution and is higher under blue-rich spectrum. In contrast, the output energy of mc-Si module is sensitive to module temperature but not to spectrum distribution.  相似文献   

18.
根据太阳电池温度特性,研究通过工程热物理途径来提高太阳电池光电转换效率的方法,开发出新型蓄冷降温式太阳电池组件,利用夜间大气自然冷量吸收太阳电池热量,降低其工作温度。室外试验于07年10月~08年11月在广州地区进行,测试分析了该组件及对照组平板式太阳电池组件的温度—电能输出及转换效率特性。结果表明:与平板式组件相比,蓄冷降温式太阳电池组件工作温度大大降低,效率相应提高。蓄冷降温式组件最大温降达26.5℃,瞬时电能输出相对提高18%,全天电能输出增长14%以上。  相似文献   

19.
Inverter sizing strategies for grid-connected photovoltaic (PV) systems often do not take into account site-dependent peculiarities of ambient temperature, inverter operating temperature and solar irradiation distribution characteristics. The operating temperature affects PV modules and inverters in different ways and PV systems will hardly ever have a DC output equal to or above their STC-rated nominal power. Inverters are usually sized with a nominal AC output power some 30% (sometimes even more) below the PV array nominal power. In this paper, we show that this practice might lead to considerable energy losses, especially in the case of PV technologies with high temperature coefficients of power operating at sites with cold climates and of PV technologies with low temperature coefficients of power operating at sites with warm climates and an energy distribution of sunlight shifted to higher irradiation levels. In energy markets where PV kW h’s are paid premium tariffs, like in Germany, energy yield optimization might result in a favorable payback of the extra capital invested in a larger inverter.This paper discusses how the time resolution of solar radiation data influences the correct sizing of PV plants.We demonstrate that using instant (10 s) irradiation values instead of average hourly irradiation values leads to considerable differences in optimum inverter sizing. When calculating inverter yearly efficiency values using both, hourly averages and 1-min averages, we can show that with increased time resolution of solar irradiation data there are higher calculated losses due to inverter undersizing. This reveals that hourly averages hide important irradiation peaks that need to be considered.We performed these calculations for data sets from pyranometer readings from Freiburg (48°N, Germany) and Florianopolis (27°S, Brazil) to further show the peculiarities of the site-dependent distribution of irradiation levels and its effects on inverter sizing.  相似文献   

20.
The performances of five different types of photovoltaic modules have been measured for more than a year in the temperate climate of Perth, Western Australia. Perth averages over 5.4 peak sun hours (PSH) each day, from less than 3 in the winter months to over 8 at the height of summer. The average sun-up temperatures range between 16.5 °C and 28 °C. The types of modules examined in this study are: crystalline silicon (c-Si), laser grooved buried contact (LGBC) c-Si, polycrystalline silicon (p-Si), triple junction amorphous silicon (3j a-Si) and copper indium diselenide (CIS). Using a purpose built outdoor monitoring facility the energy production under actual operating conditions has been measured for each module. The annual and monthly performance ratios (PRs) have been calculated for the different modules and a comparison is presented here. The IV characteristics and maximum power at standard test conditions have been measured for each module prior to, and at regular intervals, during outdoor exposure. These values are compared to the manufacturers’ values, and monitored over time for the modules operated in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号