首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 67 毫秒
1.
稻壳生产活性炭   总被引:3,自引:0,他引:3  
周世贤  隋升 《沈阳化工》1996,(4):5-7,11
本文讨论以稻壳为原料,氯化锌为活化剂,制取活性炭的工艺条件,所得产品活性炭达到二级标准。  相似文献   

2.
稻壳制备活性炭和二氧化硅的研究进展   总被引:2,自引:0,他引:2  
陈龙  高枫  黄飞  陈明哲  余贺 《辽宁化工》2010,39(6):631-634
综述了稻壳在无机化工方面研究的最新成果,重点论述了以稻壳为原料制备活性炭和二氧化硅的工艺研究进展,展望了稻壳综合利用的前景。  相似文献   

3.
本文讨论以稻壳为原料,氯化锌为活化剂,制取活性炭的工艺条件,所得产品活性炭达到二级标准。  相似文献   

4.
水蒸气活化法制备稻壳活性炭的研究   总被引:1,自引:0,他引:1  
研究了水蒸气活化法制备稻壳活性炭的工艺条件,探讨了炭化温度、活化温度、活化时间和水蒸气用量对活化效果的影响。最佳工艺条件为:炭化温度 450℃、活化温度 900℃、活化时间 90 min和水蒸气用量为炭化料的1.5倍,制备的活性炭碘吸附值 844 mg/g,亚甲基蓝吸附值 138 mL/g,产品得率 13.9%。这些指标与木质活性炭相当。且投资少,能耗低,具有良好的经济效益与社会效益。  相似文献   

5.
《应用化工》2022,(10):1829-1831
以贵州思南稻壳为原料制备活性炭,考察碳化温度、活化温度、活化剂浓度以及碳碱比对制备活性炭的影响。结果表明,稻壳活性炭的最佳制备条件为:碳化温度350℃,活化温度700℃,活化剂浓度25%,碳碱质量比1∶4。稻壳活性炭对碘的吸附值为952.48 mg/g。模拟锰业废水中Mn2+的吸附率为86%。  相似文献   

6.
《应用化工》2015,(10):1829-1831
以贵州思南稻壳为原料制备活性炭,考察碳化温度、活化温度、活化剂浓度以及碳碱比对制备活性炭的影响。结果表明,稻壳活性炭的最佳制备条件为:碳化温度350℃,活化温度700℃,活化剂浓度25%,碳碱质量比1∶4。稻壳活性炭对碘的吸附值为952.48 mg/g。模拟锰业废水中Mn2+的吸附率为86%。  相似文献   

7.
稻壳制活性炭及白炭黑的新工艺研究   总被引:2,自引:0,他引:2  
  相似文献   

8.
本文采用常规加热法制备稻壳基活性炭,利用正交实验方法,探讨了分别以氢氧化钾、碳酸钾为活化剂时活性炭的最佳制备方案.通过扫描电子显微镜观察所得活性炭的表面形貌,利用热分析仪对稻壳原料进行了热力学分析,利用分光光度计测定活性炭的亚甲基蓝吸附值和碘吸附值.结果表明,采用氢氧化钾为活化剂得到的活性炭,孔洞多为小孔,其亚甲基蓝最...  相似文献   

9.
本文以稻壳污泥炭为原料,经过酸洗、除硅、活化、煅烧等一系列工艺制备了活性炭,利用亚甲基蓝溶液进行了活性炭吸附性测试,考察了工艺条件对活性炭吸附性能的影响。研究结果表明,在422℃条件下,不经ZnCl2溶液活化,煅烧3h制成的活性炭吸附值最高,为16.5mg·g-1。利用XRD、BET、TG、SEM等表征手段对原料炭或活性炭进行了分析,结果表明,制备的活性炭属于介孔炭,其比表面积为26.05m2·g-1,优于部分其他生物质活性炭。  相似文献   

10.
稻壳制备活性炭Plackett-Burman工艺优化研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用Plackett-Burman实验设计、最陡爬坡实验、Box-Behnken响应面优化设计对以稻壳为原料制备活性炭工艺条件进行优化。采用Plackett-Burman设计从影响碘吸附值的6个因素中筛选出氢氧化钠浓度、料液比、煅烧时间3个显著因素。通过最陡爬坡实验逼近最佳区域,采用Box-Behnken响应面优化设计对显著因素进行优化,得出最佳工艺条件为:氢氧化钠浓度为2.50 mol/L、溶煮时间为60 min、料液质量比为1.125、煅烧时间为37.5 min、煅烧温度为600 ℃。在此工艺条件下获得碘吸附值为807.76 mg/g,通过可靠性实验验证,实验误差为0.283%,说明本优化工艺条件可行。  相似文献   

11.
采用H3 PO4为活化剂、稻壳为原料,通过微波和马弗炉两种方法制备活性炭。详细考察了浸渍时间、料液比、活化剂浓度、微波功率或活化温度、以及活化时间的影响。结果显示,在磷酸浓度35%、料液质量比1:4、浸渍时间3 h的条件下,采用400 W微波功率辐射8 min,制备的活性炭亚甲基蓝吸附值达到232 mg/g,若采用马弗炉600℃焙烧10 min,活性炭的亚甲基蓝吸附值达到226 mg/g。  相似文献   

12.
采用物理法将稻壳炭化,炭化料用酸碱处理,固体残渣经高温水蒸汽活化制备活性炭,脱灰液体采用沉淀法制备SiO2. 结果表明,用2.5 mol/L NaOH溶液按液固比10 mL/g脱灰的炭化料所制活性炭比表面积为961.8 m2/g,比不脱灰炭化料所制活性炭增加136%,总孔容积增加103.8%,对碘和亚甲基蓝的吸附容量分别为1270和300 mg/g. 在10% HCl、煅烧温度600℃条件下所制SiO2粒径为40~60 nm,为无定型结构,比表面积达330 m2/g,纯度达99.84%.  相似文献   

13.
以气化稻壳炭(GRHC)为原料,KOH为活化剂制备活性炭,研究了不同活化温度和碱炭比对活性炭得率、比表面积、孔径分布以及碘值的影响.利用全自动气体吸附分析仪、X射线衍射仪、傅里叶变换红外光谱仪、扫描电镜等仪器对活性炭的理化性质进行表征,并通过吸附等温线、吸附动力学探讨其对甲基橙的吸附机制.结果表明:活化时间为1h时,随...  相似文献   

14.
谭非  陆龙河  陈孝云  黄彪 《广东化工》2009,36(11):12-13
文章以造纸黑液及氢氧化钠为活化剂,采用正交实验法,研究了炭化温度、浸渍比、活化耕浓度,活化时问、活佬温度对活性炭性能亚甲基蓝吸附值的影响。得到了最佳工艺条件为成炭温度300℃,活化温度750℃,活化对间4h,NaOH含量10%,料液比1:7,在这条件下制得的活性炭亚甲基蓝脱色力为16mL/0.1g。结果表明,活化温度是影响活性炭性能豹主要因素。  相似文献   

15.
以稻壳为原料,氢氧化钠为活化剂,制备活性炭.进一步将该活性炭作为电极材料,以氢氧化钾溶液为电解液,组装超级电容器.采用X射线衍射(XRD)、氮气吸附脱附(BET)、扫描电镜(SEM)等手段,分析了不同活化温度对活性炭的比表面积及孔结构的影响,并利用恒流充放电、循环伏安等方法研究了电容器的电化学性能.结果表明:800 ℃活化下活性炭的比表面积最佳,为2760 m2/g,孔结构发达.此条件下,在6 mol/L的KOH电解液中,活性炭电容器比电容达267.2 F/g,等效内阻仅2.2 Ω,倍率性能好.经过5000次循环后,其电容保持率仍有83.7%,表明该稻壳基活性炭电极具有优异的充放电可逆性和循环稳定性.  相似文献   

16.
由稻壳制备纳米结构SiO2   总被引:1,自引:2,他引:1  
以稻壳为原料制备纳米结构SiO2,并用X-射线衍射、扫描电镜、透射电镜以及小角X-射线散射对其结构进行了表征。结果表明,由稻壳制备的SiO2具有分层结构:由硅氧四面体无规连接构成粒径为4nm左右、表面分形维数Ds≈2.3的一次粒子;一次粒子聚集成粒径30~50nm、质量分形维数Dm≈2.7的二次粒子。  相似文献   

17.
赖寿莲 《硅酸盐通报》2012,31(2):354-357,370
用煤炭粉和硅藻土为主原料,经配料、成型、炭化、活化等工艺制备一种活性炭-陶瓷复合材料。研究了不同配方复合材料的力学性能,确定最佳配方。探讨活化剂浓度、温度和时间对复合材料含炭量,比表面及碘吸附值的影响。用碘吸附值、SEM、BET等方法表征复合材料的性能和微观形貌。确定复合材料的最佳配方为硅藻土70%,煤炭粉30%;以ZnCl2活化剂的最佳浓度为20%,在活化温度为850℃,时间为2.0 h时,复合材料的碘吸附值达226.7 mg/g,比表面积达到153.5 m2/g。  相似文献   

18.
氢氧化钾法制备竹活性炭   总被引:3,自引:0,他引:3  
以林业废弃物竹屑为原料,氢氧化钾为活化剂制备高性能活性炭。采用3因素3水平正交试验设计法考察活化温度、活化时间以及浸渍时间对产品吸附性能的影响。在最佳条件下,料液比1:4,浸渍时间1 h,活化温度900℃和活化时间90 min。制得的活性炭具有发达的微孔隙结构,比表面积高达2415 m2/g。  相似文献   

19.
磷酸法水稻秆活性炭的制备   总被引:3,自引:1,他引:2  
以水稻秆为原料,采用磷酸活化法制备活性炭。研究了浸渍比、活化温度对活性炭样品吸附性能的影响,并对其微结构进行N2吸附等温线、热重-微商热重法(TG-DTG)、扫描电子显微镜(SEM)等表征。结果表明:水稻秆适合作为磷酸法活性炭的原料,吸附性能达到市售脱色活性炭的指标要求。在浸渍比为3∶1、活化温度 450 ℃、活化时间 60 min 的条件下,制得活性炭的亚甲基蓝吸附值 215 mg/g,碘吸附值 855 mg/g,A法焦糖脱色率 110 %,BET比表面积 967.72 m2/g,总孔容积 1.23 cm3/g,中孔率 84.6 %,平均孔径 4.6 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号