首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
活性炭对丁酮的吸附动力学研究   总被引:1,自引:0,他引:1  
研究了2种活性炭(木质活性炭和煤质活性炭)对丁酮的吸附,重点考察了活性炭的吸附时间、吸附温度和丁酮载气流量对丁酮吸附的影响,并用准一级、准二级、Elovich和Bangham 4种动力学模型对活性炭在不同温度条件下对丁酮的吸附行为进行了动力学拟合,确定其动力学吸附模型。实验表明:不同的活性炭对丁酮的吸附过程不同;活性炭对丁酮的吸附是一个吸附和解吸同时存在的过程,当吸附速率和解吸速率相等时,该过程达到吸附平衡;随着吸附温度的升高,活性炭对丁酮的饱和吸附量逐渐降低,说明活性炭对丁酮的吸附过程为放热反应;丁酮载气流量对活性炭吸附丁酮达到饱和的时间以及吸附速率有影响,对AC-1的最终饱和吸附量影响显著,对AC-2的最终饱和吸附量没有显著影响。这2种活性炭吸附丁酮最适宜的吸附温度均为303 K,最佳的载气流量为400 mL/min。在不同温度下对活性炭吸附丁酮的过程进行动力学分析,发现Bangham方程计算得到的相关系数R2大于0.99,因此,活性炭对丁酮的吸附动力学方程符合Bangham动力学方程。  相似文献   

2.
活性炭对汞离子的吸附动力学研究   总被引:2,自引:0,他引:2  
以椰壳活性炭为原料,采用水蒸气法二次活化制备得到了微孔含量丰富的椰壳活性炭,其亚甲基蓝吸附值165 mg/g,碘吸附值1 090 mg/g。采用氮气吸附等温线对其比表面积和孔结构进行了表征。以氯化汞为污染目标物,考察了活性炭对于Hg2+的吸附性能。结果表明,活性炭对Hg2+的吸附量与其比表面积以及孔结构有关。吸附动力学实验表明活性炭吸附是一个快速吸附和缓慢吸附共存的双速过程,可以用Lagergren伪二级速率方程进行拟合;吸附等温线实验表明活性炭吸附Hg2+是一个放热的过程,属于单分子层吸附,符合Langmuir吸附等温式。  相似文献   

3.
以石油焦为原料经高温炭化和水蒸气活化处理制备出石油焦基活性炭,经硝酸氧化处理后,采用静态吸附法测试了2-甲基噻吩在石油焦基活性炭上的吸附性能。研究结果显示,制备的活性炭比表面积高于800 m2·g-1,孔容大于0.45 cm3·g-1,经硝酸处理后比表面积和总孔容有所下降。样品经硝酸处理后,对2-甲基噻吩的饱和吸附量显著增加,硝酸处理40 min得到的活性炭对2-甲基噻吩的饱和吸附量最大。2-甲基噻吩在石油焦基活性炭上的吸附动力学均遵循拟二级动力学模型,饱和吸附量随吸附温度的增加而减小,热力学上表现为放热,熵减且是自发进行的过程。  相似文献   

4.
以椰壳为原料,经过低温干馏、活化,制备了椰壳活性炭。以苯作为吸附质,对制备的椰壳活性炭进行了吸附实验,探索温度对椰壳活性炭吸附性能的影响以及活性炭微观吸附机制,采用比表面积及孔径对椰壳活性炭进行了表征。结果表明,30℃时所制备的活性炭对苯的饱和吸附量为437.0 mg/g,合适的再生温度为150℃。所制备的椰壳活性炭最大比表面积为1 860 m2/g, BJH孔径为48 nm。吸附曲线表明,椰壳活性炭吸附属于BDDT分类中的Ⅱ型;在温度(T)<40℃或压力(P/P_0)>0.5时,椰壳活性炭对非极性苯分子的吸附类型由初始的单分子层吸附转变为多分子层与毛细管凝聚相结合的物理吸附,有利于提高活性炭对苯的吸附效果。  相似文献   

5.
热解活化法制备高吸附性能椰壳活性炭   总被引:1,自引:1,他引:0  
以椰壳为原料,采用高温直接热解活化法制备高吸附性能活性炭。研究了活化温度、活化时间对活性炭吸附性能的影响。研究结果表明,活化温度为 900 ℃,热解活化时间为 8 h,升温速率为 10 ℃/min,制得碘吸附值为 1 628.54 mg/g,亚甲基蓝吸附值为 375 mg/g 的高吸附性能椰壳活性炭,得率为 9.41 %。氮气吸附实验结果表明,该活性炭比表面积 1 723 m2/g、总孔容积 0.87 cm3/g、微孔容积 0.68 cm3/g、中孔容积0.18 cm3/g、平均孔径 2.03 nm。热解活化制备的椰壳活性炭样品性能优于市售水蒸气法椰壳净水活性炭国家标准。  相似文献   

6.
以莲杆为前驱体制备了莲杆基活性炭,并研究了其对SO_2的吸附性能,结果表明,碳化温度对莲杆基活性炭的比表面积、孔体积和平衡吸附量有较大影响。碳化温度为400℃时,得到的活性炭的比表面积最大,平衡吸附量为27.76mg·g~(-1),且随碳化温度的升高,孔体积有明显增大的趋势。较高的温度有利于SO_2被吸附,最佳空速为1500h~(-1)。较高的解吸温度有利于得到中高浓度的SO_2。  相似文献   

7.
采用高温热处理法去除活性炭表面含氧官能团,并通过化学浸泡法分别将酚羟基和羧基添加到活性炭表面。利用氮气吸附-脱附、X射线衍射分析、X射线光电子能谱法对改性前后活性炭进行表征。研究发现:经高温热处理的活性炭比表面积增大为1139m2/g,孔径集中分布于1nm以下;热处理后活性炭内部晶格结构更加完整。经过化学改性后,酚羟基和羧基均可以一定比例负载到活性炭表面,且比表面积随着负载量增多而下降。对气态汞的吸附实验表明:经高温热处理的样品对气态汞的吸附能力与原始活性炭相比有所下降:当达到吸附饱和时,原始活性炭的吸附量为306.55μg/g,而经热处理的样品的吸附量是243.5μg/g;负载羧基的活性炭样品,其吸附容量高达865.3μg/g;负载酚羟基样品的吸附容量为133.1μg/g。由此得出结论:活性炭表面的含氧官能团对其吸附气态汞有重要影响,其中羧基的存在有利于对气态汞的吸附,而酚羟基的存在对气态汞的吸附不起促进作用。  相似文献   

8.
活性炭孔结构和表面官能团对吸附甲醛性能影响   总被引:8,自引:0,他引:8  
通过对不同比表面积和孔结构的活性炭进行甲醛吸附的研究,以重量法精确测量活性炭对甲醛气体的饱和吸附量,比较各种活性炭和改性活性炭的吸附效果。实验表明,活性炭对甲醛分子的吸附与其孔结构和表面官能团密切相关,微孔比表面积大吸附效果明显,中孔比表面积大达到吸附平衡的时间短。此外,通过对活性炭浸渍改性的研究表明,强氧化性的HNO,和H202处理的样品均有利于对甲醛分子的吸附,而氨基改性过的样品吸附效果减弱,主要原因是HNO3改性增加了活性炭表面的C=O、O-C=O等含氧官能团的量,从而改善了对甲醛的吸附效果。  相似文献   

9.
水蒸气活化法制备椰壳活性炭的孔结构特征   总被引:2,自引:0,他引:2  
以农林废弃物椰壳在600℃炭化2h后的炭化料为原料,以水蒸气为活化剂,研究了活化温度、活化时间、水蒸气用量对活性炭的比表面积、微孔容积和收率等的影响。结果表明:椰壳炭化料的比表面积仅为185m^2/g,且以中孔为主。在活化过程中,通过提高活化温度和水蒸气用量缩短了活化时间,扩宽了孔径;当水蒸气用量和活化温度较为适宜时,延长活化时间,有利于微孔的形成。活性炭的比表面积、总孔容积、微孔容积可达:1465m^2/g,0.9703cm^3/g,0.7519cm^2/g。并通过非定域密度函数理论(NLDFT)对活性炭的孔径分布进行了表征。  相似文献   

10.
CO_2活化制备椰壳基活性炭   总被引:6,自引:1,他引:6  
以600℃下炭化2h后的椰壳炭化料为原料,通过CO2活化制备椰壳基活性炭,研究了活化温度、活化时间、CO2流量对活性炭得率及其吸附性能的影响。同时测定了该活性炭的N2吸附等温线,通过非定域化密度函数理论表征活性炭孔径分布。在适宜的工艺条件,所制备活性炭的得率为24%,碘吸附值为1428mg/g,其比表面积、总孔容积、微孔容积分别可达:1653m2/g,1.045cm3/g,0.8582cm3/g,且以2nm以下的微孔为主,产品性能达到了双层电容器专用活性炭(LY/T1617—2004)标准。  相似文献   

11.
以CO2为活化气氛,通过一步快速热解活化法从黑山煤粉与生物质混合物中制取活性炭。讨论了不同质量比率、活化温度和CO2浓度对活性炭比表面积的影响。通过N2吸附(BET)、扫描电镜(SEM)、拉曼光谱(Raman)和红外光谱(FTIR)对活性炭的性能进行了表征。确定了制备活性炭的最佳条件为活化温度900℃、质量比1、CO2体积分数30%、活化时间120min时,活性炭的比表面积和孔容最大,分别为901m2/g和0.39cm3/g。最后,用乙酸乙酯吸附量验证了其吸附性能,最大累积吸附量为766.51mg/g。  相似文献   

12.
随着工业的发展,环境问题日趋严重,而二价汞污染作为环境问题之一受到越来越多的关注。本文采用过体积浸渍法制备了铜基和铁基[CuCl2,FeCl3,Cu (NO32]改性的活性炭,考察了不同浓度以及煅烧温度制备的改性活性炭对模拟烟气中二价汞(HgCl2)脱除性能的影响。通过吸附穿透实验的对比研究得出,无论是铜基或铁基改性的活性炭都对含氯化汞烟气有很好的吸附效果,并且300℃焙烧的0.01mol/L的氯化铜改性活性炭是深度脱除含氯化汞烟气效果最好的改性活性炭,其吸附量达到了4.55mg/g。在此基础上,进一步利用了XRD、BET、XPS常用表征手段研究了改性前后活性炭的物理化学特性,证明了铜基、铁基改性活性炭吸附氯化汞都是物理吸附与化学吸附共同作用的结果,并给出了相应的解释,以期为后续的科学研究提供一定的思路。  相似文献   

13.
王燕霞  胡修德  郝健  郭庆杰 《化工学报》2020,71(5):2333-2343
以商业煤基活性炭为原料,经低浓度氧气焙烧、H2O2氧化改性,并以四乙烯五胺(TEPA)浸渍,得到胺负载复合氧化活性炭,用于模拟烟道气[(15%(体积)CO2+85%(体积)N2)+10%(体积)H2O]中CO2吸附。低浓度氧气焙烧后,活性炭的最大比表面积和孔体积分别为1421.82 m2/g、0.83 cm3/g。经复合氧化改性后,活性炭的介孔体积增大,表面含氧官能团增加,使得TEPA负载复合氧化活性炭的CO2吸附性能提高。焙烧时间为4 h,H2O2氧化、负载40%TEPA的样品COAC-4-40TEPA,在60℃时CO2饱和吸附量最高为2.45 mmol/g,是TEPA负载未改性活性炭AC-40TEPA的2.02倍。经过十次吸附循环后,COAC-4-40TEPA的 CO2饱和吸附量可维持在92.24%,而TEPA的浸出量仅有0.67%。失活模型研究表明,COAC-4-40TEPA的初始吸附速率常数是AC-40TEPA的1.64倍,且失活速率常数低于AC-40TEPA。  相似文献   

14.
以杏壳活性炭(AC)为原料,系统地研究了改性剂(硝酸银、硝酸铜、双氧水-硝酸铜)、改性条件(AC粒度、浸渍时间、焙烧时间、焙烧温度)对改性活性炭吸附乙烯性能的影响。采用ESEM-EDS、FT-IR、XPS等手段对改性活性炭的结构、表面化学成分等进行分析,并初步探讨了改性活性炭吸附乙烯的机理。研究结果表明用15%双氧水先氧化预处理后再用2%硝酸铜作改性剂时活性炭改性效果最好;活性炭改性时,活性炭粒度、焙烧时间和焙烧温度对改性活性炭乙烯吸附性能的影响较大,而浸渍时间的影响较小。在15%双氧水氧化预处理、改性剂为2%硝酸铜、活性炭粒径0.38~0.83 mm、浸渍时间6 h、焙烧温度400℃、焙烧时间4 h条件下制得改性活性炭(H2O2-Cu-AC)对乙烯的吸附量为0.163 g/g,比AC(0.069 g/g)提高了136.23%;H2O2-Cu-AC中活性组分铜能相对均匀地分散在活性炭的表面和孔隙内部,改性剂引起了活性炭孔隙结构和表面官能团的变化,比表面积由AC的1 047.50 m2/g下降到1 012.65 m2/g,总孔容积由AC的0.467 1 cm3/g下降到0.434 7 cm3/g,孔径向较宽方向分布,其中< 10 nm的孔径分布占比由58.16%下降到53.95%,10~20 nm的孔径分布占比由18.01%上升到19.10%,>20 nm的孔径分布占比由23.83%上升到26.94%。其含氧官能团增加,C1、C3、C5降低,其中,C1峰面积占比由77.468%降低到76.827%,C3峰面积占比由6.684%降低到5.675%,C5峰面积占比由0.844%降低到0.749%;C2、C4增加,其中C2峰面积占比由13.514%增加到15.225%,C4峰面积占比由1.490%增加到1.524%。  相似文献   

15.
活性炭吸附法因技术成熟、简单易行、吸附效率高等优点而被广泛应用于挥发性有机化合物(VOCs)的处理中。本文以山林废弃物的野山桃核为原料,烟道废气及硝酸铁为活化剂,制备了一系列生物质活性炭,并利用固定床吸附装置对其吸附、再生性能进行了研究。利用二氧化碳和水蒸气模拟烟气,在固定流量的烟气活化氛围中进行活化,并探讨了不同硝酸铁的量对活性炭的孔隙结构及其吸附再生性能的影响。利用N2 吸附-脱附实验、扫描电镜、拉曼光谱和红外光谱等技术研究了活性炭详细特征。结果表明:当硝酸铁的质量分数为0.2% 时,所制备的活性炭AC-3具有最大的比表面积和平均孔径,分别为923m2/g及2.57nm。其对乙酸乙酯的饱和吸附量也最大,为973.04mg/g。利用烟气对AC-3活性炭进行活化再生处理,经过3次重复吸附-解吸再生实验,其饱和吸附能力仍可达91.5%以上,实现了废弃烟气资源化利用及活性炭的循环回收,从而达到废气治理的目标。  相似文献   

16.
利用Ca(NO32作为前体,SiO2为载体,制备了一种担载型CaO吸附剂,在固定床实验装置上分别研究了该吸附剂对元素汞(Hg0)和氯化汞(HgCl2)等不同形态汞的选择性吸附性能,以及SO2对CaO吸附剂汞形态吸附过程的影响,同时结合程序升温脱附和原位红外漫反射表征技术,深入探究了CaO的选择性吸附机理及SO2毒化机制。汞形态吸附实验结果表明,在纯N2气氛和掺杂SO2气氛下,CaO对Hg0均保持了接近100%的穿透率,而对HgCl2在两种气氛下则分别表现出66.0%和60.3%的吸附效率,说明SO2与HgCl2在CaO表面存在竞争吸附关系;吸附实验前后CaO的表征结果显示,与Hg0相比,HgCl2更易与CaO表面各碱性位形成单配位、双配位等多种吸附构型,SO2与HgCl2在易形成单配位的活性位上形成竞争吸附关系,进而在一定程度上降低了CaO对HgCl2的吸附效率。  相似文献   

17.
杨飞  岳长涛  李术元  马跃  许心怡 《化工学报》2017,68(10):3851-3859
页岩气是一种非常具有开发潜力的非常规天然气能源。选取四川宜宾地区志留系龙马溪组页岩,对总有机碳、黏土矿物含量和镜质体反射率等储层性质进行表征,通过场发射扫描电子显微镜和低温氮气吸附-解吸方法对页岩的孔隙结构进行分析。从孔隙结构表征发现,页岩中有大量的孔隙发育,并且大多数孔隙的尺寸在100 nm以下,微孔对总比表面积的贡献最大,中孔对孔体积做出了较大贡献。对页岩样品分别进行了CH4和CO2单组分气体的等温吸附实验,分析了影响页岩吸附气体能力的因素,考察了页岩样品CO2/CH4的选择性。结果表明,页岩对CO2的吸附量要远大于对CH4的吸附量;有机质含量TOC和孔隙结构对页岩的吸附有很大影响,呈正相关;温度越高,页岩对气体的吸附能力越差;单位压力变化对吸附的影响随着压力的增高而下降,逐渐趋于平缓;在竞争吸附中,页岩对CO2有更高的选择性。  相似文献   

18.
邓锋  解强  刘德钱  万超然  黄小晴  顾雪梅 《化工学报》2019,70(11):4457-4468
将泥炭破碎、粉磨、浸渍磷酸后,压块成型、再破碎,置于管式炉经不同活化温度、活化时间制得活性炭。对浸渍磷酸后的泥炭样品在氮气下进行热重分析;测定活性炭样品的碘吸附值、亚甲蓝吸附值和焦糖脱色率,利用气体吸附仪、激光拉曼光谱、傅里叶变换红外光谱和扫描电子显微镜分别表征其孔结构、碳结构、表面化学和微观形貌。结果表明:泥炭在磷酸活化过程中发生了交联反应,炭化/活化最大失重温度从300℃附近降低至200℃附近;随着磷酸浸渍比和活化温度的升高,活性炭中的无规则石墨层增多、羟基含量减少;磷酸浸渍比增加时,孔隙逐渐发达、吸附性能增强、2~5 nm孔段孔容增大;活化温度升高时,孔隙先收缩(400~550℃)后发生破坏(600℃)、吸附性能下降、2~5 nm孔段孔容减小;随着活化时间延长,活性炭的羟基含量先大幅减小(120~150 min)后无规律变化,孔隙先扩大(120~180 min)后收缩(>180 min),吸附性能>180 min后迅速下降,碳结构和2~5 nm孔段孔容无显著变化。在磷酸浸渍比1.5、活化温度500℃、活化时间180 min条件下,制得活性炭的比表面积为678.52m2·g-1,2~5 nm孔段的孔容达0.1475 cm3·g-1、占总孔容比率为31.04%、占中孔容比率为70.24%。  相似文献   

19.
A simple method was developed to tune the porosity of coal-derived activated carbons, which provided a model adsorbent system to investigate the volumetric CO2 adsorption performance. Specifically, the method involved the variation of the activation temperature in a K2CO3 induced chemical activation process which could yield activated carbons with defined microporous (< 2 nm, including ultra-microporous < 1 nm) and meso-micro-porous structures. CO2 adsorption isotherms revealed that the microporous activated carbon has the highest measured CO2 adsorption capacity (6.0 mmol∙g–1 at 0 °C and 4.1 mmol∙g–1 at 25 °C), whilst ultra-microporous activated carbon with a high packing density exhibited the highest normalized capacity with respect to packing volume (1.8 mmol∙cm−3 at 0 °C and 1.3 mmol∙cm–3 at 25 °C), which is significant. Both experimental correlation analysis and molecular dynamics simulation demonstrated that (i) volumetric CO2 adsorption capacity is directly proportional to the ultra-micropore volume, and (ii) an increase in micropore sizes is beneficial to improve the volumetric capacity, but may lead a low CO2 adsorption density and thus low pore space utilization efficiency. The adsorption experiments on the activated carbons established the criterion for designing CO2 adsorbents with high volumetric adsorption capacity.  相似文献   

20.
为解决燃煤机组耦合生物质气化发电过程中固相产物的妥善利用问题,以稻壳为原料,在襄阳电厂6#燃煤机组耦合生物质循环流化床上,考察了稻壳气化发电时气化温度对燃气组分以及固相产物的含碳量、比表面积、微观形貌和吸附能力的影响.结果 表明:燃气主要可燃成分CO和H2随温度升高先增大后减小,当温度为775℃时达到最高值,分别为18...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号