共查询到18条相似文献,搜索用时 93 毫秒
1.
粒子群优化算法是一种新型启发式智能优化算法,它运行速度快,收敛性强,但是容易陷入局部极值.为了克服粒子群算法的早熟收敛现象,提出了一种新的带有非线性惯性权重和柯西变异的粒子群优化算法.首先,对算法中的惯性权值进行改进,增强粒子局部收敛能力;然后,利用柯西变异算子,增加种群多样性.数值实验表明,提出的改进粒子群优化算法具... 相似文献
2.
3.
针对粒子群优化(particle swarm optimization,PSO)算法在迭代期间易陷入局部最优及寻优精度不高的缺点,提出一种总结性自适应变异的粒子群算法SCVPSO(self-conclusion and self-adaptive variation particle swarm optimizatio... 相似文献
4.
针对传统粒子群优化算法在解决一些复杂优化问题时易陷入局部最优且收敛速度较慢的问题,提出一种多策略混合的粒子群优化算法(Hybrid Particle Swarm Optimization with Multiply Strategies,HPSO)。该算法利用反向学习策略产生反向解群,扩大粒子群搜索的范围,增强算法的全局勘探能力;同时,为避免种群陷入局部最优,算法对种群中部分较差的个体实施柯西变异,以产生远离局部极值的个体,而对群体中较好的个体施以差分进化变异,以增强算法的局部开采能力。对这3种策略进行了有机结合以更好地平衡粒子群算法全局勘探和局部开采的能力。将HPSO算法与其他3种知名的粒子群算法在10个标准测试函数上进行了性能比较实验,结果表明HPSO算法在求解精度和收敛速度上具有较显著的优势。 相似文献
5.
基于最优变异的粒子群优化算法 总被引:1,自引:0,他引:1
为了提高粒子群优化算法的性能,提出了一种带最优变异的改进粒子群优化算法。该算法的惯性权值满足不同粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值会作相应的调整,在搜索过程中所引入的变异算子将对粒子群中最优粒子进行变异,以防止算法早熟收敛。对4个典型的测试函数的仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度。 相似文献
6.
7.
针对粒子群优化算法在进化过程的后期收敛速度较慢,易陷入局部最优的缺点,对基本粒子群优化算法作了如下改进:在速度更新公式中引入非线性递减的惯性权重;改进位置更新公式;对全局极值进行自适应的变异操作。提出一种新的混合变异算子的自适应粒子群优化算法。通过与其他算法的数值实验对比,表明了该算法具有较快的收敛速度和较好的收敛精度。 相似文献
8.
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同。粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整。对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能。 相似文献
9.
一种改进粒子群优化算法 总被引:3,自引:1,他引:3
朱玉平 《计算机技术与发展》2008,18(11)
为了提高粒子群优化算法的性能,提出了一种惯性权值调整的改进粒子群优化算法,该算法的惯性权值满足不同粒子对全局和局部搜索能力的不同需求,每次迭代后根据适应度值对惯性权值做相应的调整.对4个典型的测试函数进行仿真表明,该算法比标准粒子群优化算法有更好的收敛性和更快的收敛速度,改善了优化性能. 相似文献
10.
混合变异算子的自适应粒子群优化算法 总被引:5,自引:0,他引:5
针对惯性权重线性递减粒子群算法(LDW)不能适应复杂的非线性优化搜索过程的问题,提出了一种非线性递减的惯性权重策略,使算法很快地进入局部搜索,并在算法中引入混合变异算子,克服算法易早熟收敛的缺陷。对几种典型函数的测试结果表明,本文算法的收敛速度和收敛精度都明显优于LDW算法。 相似文献
11.
针对粒子群算法(Particle Swarm Optimization,PSO)容易陷入局部最优、收敛速度过慢、精度低等问题,提出一种新的变异策略,对全局最优粒子进行逐维的重心反向学习变异.逐维变异降低了维间干扰,通过更新全局最优位置引领粒子向更好的位置飞行,同时加强了种群的多样性.仿真实验与基于柯西变异的混合粒子群算法(HPSO)及重心反向粒子群优化算法(COPSO)在9个标准测试函数上进行了对比.实验表明逐维重心反向变异算法(DCOPSO)具有较高的收敛速度及精度. 相似文献
12.
李剑 《计算机与数字工程》2009,37(7):13-16
为了提高微粒群算法优化高维目标的性能,采用了个体惯性权重自适应调整的微粒群算法,其中每个微粒拥有属于个体的惯性权重。通过对每个微粒的适应值进行评价对惯性权重动态和自适应,以加快其收敛速度并逃离局部最优。为了增强搜索性能,基于高斯变异和随机变异的变异算子被引入。该方法以及其他3种不同微粒群优化算法对4个经典函数在100、200和400维数下进行仿真的结果比较证明此算法在解决高维数目标时具有良好性能。 相似文献
13.
14.
15.
16.
17.