首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
The k-set agreement problem is a generalization of the uniform consensus problem: each process proposes a value, and each non-faulty process has to decide a value such that a decided value is a proposed value, and at most k different values are decided. It has been shown that any algorithm that solves the k-set agreement problem in synchronous systems that can suffer up to t crash failures requires rounds in the worst case. It has also been shown that it is possible to design early deciding algorithms where no process decides and halts after rounds, where f is the number of actual crashes in a run (0≤ft).This paper explores a new direction to solve the k-set agreement problem in a synchronous system. It considers that the system is enriched with base objects (denoted has [m,?]_SA objects) that allow solving the ?-set agreement problem in a set of m processes (m<n). The paper makes several contributions. It first proposes a synchronous k-set agreement algorithm that benefits from such underlying base objects. This algorithm requires rounds, more precisely, rounds, where . The paper then shows that this bound, that involves all the parameters that characterize both the problem (k) and its environment (t, m and ?), is a lower bound. The proof of this lower bound sheds additional light on the deep connection between synchronous efficiency and asynchronous computability. Finally, the paper extends its investigation to the early deciding case. It presents a k-set agreement algorithm that directs the processes to decide and stop by round . These bounds generalize the bounds previously established for solving the k-set agreement problem in pure synchronous systems.  相似文献   

6.
7.
8.
9.
L2-norms are often used in the multi-degree reduction problem of Bézier curves or surfaces. Conventional methods on curve cases are to minimize , where and are the given curve and the approximation curve, respectively. A much better solution is to minimize , where is the closest point to point , that produces a similar effect as that of the Hausdorff distance. This paper uses a piecewise linear function L(t) instead of t to approximate the function φ(t) for a constrained multi-degree reduction of Bézier curves. Numerical examples show that this new reparameterization-based method has a much better approximation effect under Hausdorff distance than those of previous methods.  相似文献   

10.
11.
12.
For a positive integer d, an L(d,1)-labeling f of a graph G is an assignment of integers to the vertices of G such that |f(u)−f(v)|?d if uvE(G), and |f(u)−f(v)|?1 if u and u are at distance two. The span of an L(d,1)-labeling f of a graph is the absolute difference between the maximum and minimum integers used by f. The L(d,1)-labeling number of G, denoted by λd,1(G), is the minimum span over all L(d,1)-labelings of G. An L(d,1)-labeling of a graph G is an L(d,1)-labeling of G which assigns different labels to different vertices. Denote by the L(d,1)-labeling number of G. Georges et al. [Discrete Math. 135 (1994) 103-111] established relationship between the L(2,1)-labeling number of a graph G and the path covering number of Gc, the complement of G. In this paper we first generalize the concept of the path covering of a graph to the t-group path covering. Then we establish the relationship between the L(d,1)-labeling number of a graph G and the (d−1)-group path covering number of Gc. Using this result, we prove that and for bipartite graphs G can be computed in polynomial time.  相似文献   

13.
A proper k-vertex coloring of a graph is an equitable k-coloring if the sizes of the color classes differ by at most 1. A graph G is equitably k-choosable if, for any k-uniform list assignment L, G is L-colorable and each color appears on at most vertices. We prove in this paper that outerplane graphs are equitably k-choosable whenever kΔ, where Δ is the maximum degree. Moreover, we discuss equitable colorings of some d-degenerate graphs.  相似文献   

14.
15.
16.
17.
18.
For a real univariate polynomial f and a closed complex domain D whose boundary C is a simple curve parameterized by a univariate piecewise rational function, a rigorous method is given for finding a real univariate polynomial such that has a zero in D and is minimal. First, it is proved that the minimum distance between f and polynomials having a zero at αC is a piecewise rational function of the real and imaginary parts of α. Thus, on C, the minimum distance is a piecewise rational function of a parameter obtained through the parameterization of C. Therefore, can be constructed by using the property that has a zero on C and computing the minimum distance on C. We analyze the asymptotic bit complexity of the method and show that it is of polynomial order in the size of the input.  相似文献   

19.
20.
Squares are strings of the form ww where w is any nonempty string. Two squares ww and ww are of different types if and only if ww. Fraenkel and Simpson [Avieri S. Fraenkel, Jamie Simpson, How many squares can a string contain? Journal of Combinatorial Theory, Series A 82 (1998) 112-120] proved that the number of square types contained in a string of length n is bounded by O(n). The set of all different square types contained in a string is called the vocabulary of the string. If a square can be obtained by a series of successive right-rotations from another square, then we say the latter covers the former. A square is called a c-square if no square with a smaller index can cover it and it is not a trivial square. The set containing all c-squares is called the covering set. Note that every string has a unique covering set. Furthermore, the vocabulary of the covering set are called c-vocabulary. In this paper, we prove that the cardinality of c-vocabulary in a string is less than , where N is the number of runs in this string.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号