首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schottky contacts were fabricated on n-type GaN using a Cu/Au metallization scheme, and the electrical and structural properties have been investigated as a function of annealing temperature by current-voltage (I-V), capacitance-voltage (C-V), Auger electron spectroscopy (AES) and X-ray diffraction (XRD) measurements. The extracted Schottky barrier height of the as-deposited contact was found to be 0.69 eV (I-V) and 0.77 eV (C-V), respectively. However, the Schottky barrier height of the Cu/Au contact slightly increases to 0.77 eV (I-V) and 1.18 eV (C-V) when the contact was annealed at 300 °C for 1 min. It is shown that the Schottky barrier height decreases to 0.73 eV (I-V) and 0.99 eV (C-V), 0.56 eV (I-V) and 0.87 eV (C-V) after annealing at 400 °C and 500 °C for 1 min in N2 atmosphere. Norde method was also used to extract the barrier height of Cu/Au contacts and the values are 0.69 eV for the as-deposited, 0.76 eV at 300 °C, 0.71 eV at 400 °C and 0.56 eV at 500 °C which are in good agreement with those obtained by the I-V method. Based on Auger electron spectroscopy and X-ray diffraction results, the formation of nitride phases at the Cu/Au/n-GaN interface could be the reason for the degradation of Schottky barrier height upon annealing at 500 °C.  相似文献   

2.
Au/n-GaN Schottky diodes with the Au electrode deposited at low temperature (LT=77K) have been studied. In comparison, the same chip of GaN epitaxial layer was also used for room temperature Schottky diodes. The low temperature Schottky diodes exhibit excellent performance. Leakage current density as low as 2.55×10−11 A·cm−2 at −2.5 V was obtained in the LT Schottky diodes. The linear region in the current-voltage curve at forward bias extends more than eight orders in current magnitude. Current-voltage-temperature measurements were carried out to study the characteristics of the LT Schottky diodes. A typical barrier height of about 1.32 eV for the LT diode, which is the highest value ever reported, was obtained. The obvious enhancement in electrical performance makes the LT processing a very promising technique for GaN device application although the detailed mechanisms for the LT Au/n-GaN Schottky diodes are still under investigation.  相似文献   

3.
Gold-based ohmic contacts, incorporating Pt, Pd, and Zn layers, to AIGaAs/GaAs heterojunction bipolar transistors (HBTs) have been characterized using transmission electron microscopy (TEM). The metallization was deposited onto a 30 nm graded emitter layer of n-type AlxGa1−xAs, which was on a 30 nm emitter layer of n-type Al0.3Ga0.7As, with the aim of contacting the underlying 80 nm thick graded base layer of p-type AlxGa1−xAs. Metal layers were deposited sequentially using electron beam evaporation and the resultant metallizations were annealed at temperatures ranging from 250-500°C for up to several minutes. A minimum contact resistance of ≈8.5 × 10−7 Ω-cm2 was achieved, which corresponded to the decomposition of ternary phases at the metallization/semiconductor interface, to binary phases, i.e., PdGa and PtAs2. Long term stability tests were done on the optimum contacts. Anneals at 270°C for up to four weeks in duration produced virtually no change in microstructure, with the exception of some outward diffusion of Ga and As.  相似文献   

4.
We have investigated the microstructural and electrical characteristics of Ti/W/Au ohmic contacts on n-type GaN (4.0 × 1018 cm−3) using Auger electron spectroscopy (AES) and transmission electron microscopy (TEM) after annealing at 900 °C. It is shown that the electrical properties are improved upon annealing at 900 °C for 1 min in nitrogen ambient. The 900 °C annealed contact produced a specific contact resistance of 8.4 × 10−6 Ω cm2. It is further shown that the contact exhibits thermal stability during annealing at 900 °C. Based on the Auger electron microscopy and transmission electron microscopy studies, the formation of TiN layer results in an excess of N vacancies near the surface of the GaN layer, which could be the reason for the low-resistance of the Ti/W/Au contact.  相似文献   

5.
Thin Ni/Au (3/6 nm) bi-layer metal films annealed by photo-chemical vapor deposition (photo-CVD) were investigated. With proper annealing in oxygen by the photo-CVD systems, it was found that the transmittance of the deposited Ni/Au increased from 67 to 85% in the region between 350 and 450 nm. GaN metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors with photo-CVD annealed Ni/Au contact electrodes were also fabricated. It was found that dark current of the detector became significantly smaller after annealing. With a 1 V applied bias, it was found that we can achieve a photocurrent to dark current contrast ratio of 2.54×103 from the photodetectors with 600 °C photo-CVD annealed Ni/Au contacts.  相似文献   

6.
The Au/n-Si Schottky barrier diodes (SBDs) with 200-μm (sample D200) and 400-μm (sample D400) bulk thicknesses have been fabricated. The ideality factor and the barrier height have been calculated from the forward-bias current-voltage (I-V) characteristics of D200 and D400 SBDs. The energy distribution of the interface states and relaxation time are found from the capacitance-frequency (C-f) characteristics. The density of interface state and relaxation times have a (nearly constant) slow exponential rise with bias in the range of Ec −0.77 and Ec −0.47 eV from the midgap toward the bottom of the conductance band. Furthermore, the energy distribution of the interface states obtained from C-f characteristics has been compared with that obtained from the forward-bias I-V characteristics.  相似文献   

7.
The effect of γ-ray exposure on the electrical characteristics of Au/n-GaAs Schottky barrier diodes has been investigated using current–voltage and capacitance–voltage techniques. The results indicate that irradiation with a cumulative dose of 10 Mrad (Si) improves the electrical characteristics of the diode. The parameters like ideality factor, series resistance and reverse leakage current determined from the current–voltage data decreases, whereas the barrier height and rectification ratio increases upon irradiation. The effective barrier height deduced from the capacitance–voltage technique has also increased with irradiation. The irradiated diode shows a higher carrier concentration compared to the virgin diode. The observed overall improvement in the diode quality is attributed to the annealing effect of γ-rays.  相似文献   

8.
A new approach to studying Schottky barrier formation on a nanometer scale is demonstrated using both Auger electron spectroscopy core level shift and secondary electron threshold work function measurements on cleaved epilayers. Band bending induced by metallization of cleaved epilayer surfaces can be investigated without introducing defects due to chemical or ion beam surface cleaning. For GaN epilayers, this approach also avoids complications due to piezoelectric effects on polar-axis growth surfaces. Initial investigations of Au and Ag Schottky contact formation on GaN in ultrahigh vacuum reveal the presence of a pinning level ∼1.7 eV above the valence band edge.  相似文献   

9.
Titanium (15 nm)/aluminum (60 nm)/rhenium (20 nm)/gold (50 nm) ohmic contacts to moderately doped n-type GaN (4.07×1018 cm−3) have been investigated as a function of annealing temperature. It is shown that the current-voltage (I–V) characteristics of the contacts are improved upon annealing at temperatures in the range of 550–750°C. Specific contact resistance as low as 1.3 × 10−6 Ωcm2 is obtained after annealing at 750°C for 1 min in a nitrogen ambient. X-ray photoemission spectroscopy (XPS) results show that the Ga 2p core level for the sample annealed at 750°C shifts toward the high binding side by 0.71 eV compared with that of the as-deposited one. It is also shown that the contact does not seriously suffer from thermal degradation even when annealed at 750°C for 30 min. Based on Auger electron spectroscopy (AES), glancing angle x-ray diffraction (GXRD), and XPS results, possible explanations for the annealing-induced improvement of the ohmic behavior are described and discussed.  相似文献   

10.
A Si wafer was sequentially sputter-coated with Ti (20 nm), Cu (6 μm), Sn (4 μm), and In (4 μm). The specimen was then diffusion-soldered at temperatures between 150 and 300°C with an alumina substrate deposited with Cu (4 μm) and Au (6 μm). Experimental results showed that a multilayer of intermetallic phases with the compositions of (Cu0.99Au0.01)6(Sn0.52In0.48)5/(Au0.87Cu0.13)(In0.94Sn0.06)2/(Au0.98Cu0.02) (In0.95Sn0.05) formed at the Au/Cu interface. Kinetic analyses revealed that the growth of (Cu0.99Au0.01)6 (Sn0.52In0.48)5 and (Au0.87Cu0.13)(In0.94Sn0.06)2/(Au0.98Cu0.02)(In0.95Sn0.05) intermetallics were diffusion-controlled with activation energies of 21.5 and 31.3 kJ/mol, respectively. Sound tensile strengths of 42 and 48 kg/cm2 have been obtained under the bonding conditions of 150°C for 40 min. and 200°C for 30 min., respectively.  相似文献   

11.
A preliminary investigation of both as-deposited and annealed titanium (75 nm), palladium (75 nm), gold (400 nm), ohmic contacts to thinp +-GaAs layers, was carried out using a combination of transmission electron microscopy, energy dispersive x-ray analysis, secondary ion mass spectroscopy and electrical measurements. The annealed contacts showed limited interaction between the metallization and the semiconductor with a metal penetration depth of only 2 nm for a 4 minute anneal at 380° C. The contacts were found to remain layered after annealing. The layers consisted of a uniform upper layer of large a Au(Ga) grains, a central, non-uniform layer containing small Pd-rich grains and a lower uniform layer of almost pure Ti. Preliminary SIMS studies suggested Zn dopant outdiffusion from the epilayer into the metal layer and this may have important implications for the electrical properties of these contacts.  相似文献   

12.
The current-voltage (I-V) characteristics of Au/n-GaP Schottky barrier diode was analyzed in wide temperature range of 220–400 K. The conduction mechanism in the low bias region, except for 220 K and 240 K, was identified as tunneling (TN). Nevertheless, thermionic emission (TE) becomes dominant as the voltage increases. The diode parameters were evaluated in this region by TE model incorporating the concept of thin insulating layer. The series resistance (Rs) of the device was found to decrease with increase in temperature. In the 220–320 K temperature range, as reported for most of the Schottky diodes, the zero-bias barrier height (ϕb0) decreases and the ideality factor (η) increases with the decrease of temperature. The value of modified Richardson constant (A**) obtained agrees well with the theoretical value. However, in the 320–400 K range, the variation of η and ϕb0 with temperature shows opposite trend, which is speculated as due to the change in conduction pattern by the temperature induced modifications at the interface.  相似文献   

13.
During the reflowing of Sn-9Zn solder ball grid array (BGA) packages with Au/Ni/Cu and Ag/Cu pads, the surface-finished Au and Ag film dissolved rapidly and reacted with the Sn-9Zn solder to form a γ3-AuZn4/γ-Au7Zn18 intermetallic double layer and ε-AgZn6 intermetallic scallops, respectively. The growth of γ3-AuZn4 is prompted by further aging at 100°C through the reaction of γ-Au7Zn18 with the Zn atoms dissolved from the Zn-rich precipitates embedded in the β-Sn matrix of Sn-9Zn solder BGA with Au/Ni/Cu pads. No intermetallic compounds can be observed at the solder/pad interface of the Sn-9Zn BGA specimens aged at 100°C. However, after aging at 150°C, a Ni4Zn21 intermetallic layer is formed at the interface between Sn-9Zn solder and Ni/Cu pads. Aging the immersion Ag packages at 100°C and 150°C caused a γ-Cu5Zn8 intermetallic layer to appear between ε-AgZn6 intermetallics and the Cu pad. The scallop-shaped ε-AgZn6 intermetallics were found to detach from the γ-Cu5Zn8 layer and float into the solder ball. Accompanied with the intermetallic reactions during the aging process of reflowed Sn-9Zn solder BGA packages with Au/Ni/Cu and Ag/Cu pads, their ball shear strengths degrade from 8.6 N and 4.8 N to about 7.2 N and 2.9 N, respectively.  相似文献   

14.
The intermetallic compounds formed after reflow and burn-in testing of a Sn-20In-0.8Cu solder ball grid array (BGA) package are investigated. Along with the formation of the Cu6(Sn0.78In0.22)5 precipitates (IM1) in the solder matrix, scallop-shaped intermetallic compounds (IM2) with a compositional mixture of Cu6(Sn0.87In0.13)5 and Ni3(Sn0.87In0.13)4 appear at the interfaces between the solder balls and Au/Ni/Cu pads. A significant number of intermetallic particles (IM3), with a composition of (Au0.80Cu0.20)(In0.33Sn0.67)2, can also be found in the solder matrix. After aging at 115°C for 750 h, an additional intermetallic compound layer (IM4) with a composition of (Ni0.91Cu0.09)3(Sn0.77In0.23)2 is formed at the interface between IM2 and the Ni layer. The ball shear strength of the Sn-20In-0.8Cu BGA solder after reflow is 4.5 N and will rise to maximum values after aging at 75°C and 115°C for 100 h. With a further increase of the aging time at both temperatures, the joint strengths exhibit a tendency to decline linearly at about 1.7×10−3 N/h.  相似文献   

15.
During the reflow process of Sn-8Zn-20In solder joints in the ball grid array (BGA) packages with Au/Ni/Cu and Ag/Cu pads, the Au and Ag thin films react with liquid solder to form γ3-AuZn4/γ-Au7Zn18 and ε-AgZn6 intermetallics, respectively. The γ3/γ intermetallic layer is prone to floating away from the solder/Ni interface, and the appearance of any interfacial intermetallics cannot be observed in the Au/Ni surface finished Sn-8Zn-20In packages during further aging treatments at 75°C and 115°C. In contrast, ε-CuZn5/γ-Cu5Zn8 intermetallics are formed at the aged Sn-8Zn-20In/Cu interface of the immersion Ag BGA packages. Bonding strengths of 3.8N and 4.0N are found in the reflowed Sn-8Zn-20In solder joints with Au/Ni/Cu and Ag/Cu pads, respectively. Aging at 75°C and 115°C gives slight increases of ball shear strength for both cases.  相似文献   

16.
Finer pitch wire bonding technology has been needed since chips have more and finer pitch I/Os. However, finer Au wires are more prone to Au-Al bond reliability and wire sweeping problems when molded with epoxy molding compound. One of the solutions for solving these problems is to add special alloying elements to Au bonding wires. In this study, Cu and Pd were added to Au bonding wire as alloying elements. These alloyed Au bonding wires—Au-1 wt.% Cu wire and Au-1 wt.% Pd wire—were bonded on Al pads and then subsequently aged at 175°C and 200°C. Cu and Pd additions to Au bonding wire slowed down interfacial reactions and crack formation due to the formation of a Cu-rich layer and a Pd-rich layer at the interface. Wire pull testing (WPT) after thermal aging showed that Cu and Pd addition enhanced bond reliability, and Cu was more effective for improving bond reliability than Pd. In addition, comparison between the results of observation of interfacial reactions and WPT proved that crack formation was an important factor to evaluate bond reliability.  相似文献   

17.
The Ti/Pt/Au metallization system has an advantage of resisting KOH or TMAH solution etching. To form a good ohmic contact, the Ti/Pt/Au metallization system must be alloyed at 400℃. However, the process temperatures of typical MEMS packaging technologies, such as anodic bonding, glass solder bonding and eutectic bonding, generally exceed 400℃. It is puzzling if the Ti/Pt/Au system is destroyed during the subsequent packaging process. In the present work, the resistance of doped polysilicon resistors contacted by the Ti/Pt/Au metallization system that have undergone different temperatures and time are measured. The experimental results show that the ohmic contacts will be destroyed if heated to 500℃. But if a 20 nm Pt film is sputtered on heavily doped polysilicon and alloyed at 700℃ before sputtering Ti/Pt/Au films, the Pt5Si2-Ti/Pt/Au metallization system has a higher service temperature of 500℃, which exceeds process temperatures of most typical MEMS packaging technologies.  相似文献   

18.
The Schottky barrier height (SBH) of Au on 4H-SiC(0001) has been studied using photoemission and synchrotron radiation. The Au was deposited in-situ on clean and well-ordered √3×√3 R30° reconstructed SiC surfaces prepared by in situ heating at ∼950°C. The SBH was determined from the shift observed in the Si 2p core level, in addition to the initial band bending determined for the clean surface. The results were compared with values obtained by electrical, capacitance-voltage (C-V), and current-voltage (I-V) characterization methods. A favorable comparison between the three independent, SBH determination methods was found.  相似文献   

19.
During post-deposition alloying of AuGe/Ni/Au ohmic contacts to microwave transistors, there is interdiffusion of alloy materials and GaAs into each other. Outdiffusion from substrate greatly influences the surface roughness of the contacts as a function of alloying temperature. During our experiments, we have observed that the RMS roughness of the contact surface followed the trend of contact resistance with alloying temperature. We seek to explain this evolution of surface morphology using a model involving the phenomena of coalescence and outdiffusion occurring simultaneously.  相似文献   

20.
After Sn-20In-0.8Cu solder balls are reflowed on a ball grid array (BGA) substrate (substrate A) with an Au/Ni surface finish, scallop-shaped intermetallic compounds with a composition of 0.83[Cu6(Sn0.87In0.13)5] + 0.17[Ni3(Sn0.87In0.13)4] are formed at the solder/pad interface. The distribution of the intermetallics is not altered by gravity or by multiple reflows of the solder joints. As another substrate (substrate B) is further attached onto the primary reflowed BGA assembly to form a sandwich structure subjected to subsequent multiple reflows, the Cu6(Sn0.87In0.13)5 interfacial intermetallic scallops remain still on the side of substrate A while many Au(In0.91Sn0.09)2 intermetallics of cubic shape appear near the solder/Ni interface on the side of substrate B. When the Sn-20In-0.8Cu solder balls are assembled simultaneously in between two substrates (A and B), Au(In0.91Sn0.09)2 intermetallic cubes of equal proportion are observed to form on both sides of the assembly. In summarizing the results, it is proposed that the diffusion of Cu atoms in the Sn-20In-0.8Cu solder toward the Ni layers after Au thin-film dissolution on Au/Ni surface finishes led to the formation of Cu6(Sn0.87Zn0.17)5 intermetallic compounds, which prevailed over the gravitational effect so that no intermetallic sedimentation in the liquid solder would occur. The appearance of Au(In0.91Sn0.09)2 at the Ni/Sn-20In-0.8Cu interfaces was hindered by the preferential formation of Cu6(Sn0.87Zn0.17)5 until the Cu atoms in the Sn-20In-0.8Cu solder matrix were consumed to a lower content via the attachment of a second substrate to the assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号