首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor-associated protein tyrosine kinases JAK1 and JAK2 are both required for the interferon (IFN)-gamma response. The effects of expressing kinase-negative JAK mutant proteins on signal transduction in response to IFN-gamma in wild-type cells and in mutant cells lacking either JAK1 or JAK2 have been analysed. In cells lacking endogenous JAK1 the expression of a transfected kinase-negative JAK1 can sustain substantial IFN-gamma-inducible gene expression, consistent with a structural as well as an enzymic role for JAK1. Kinase-negative JAK2, expressed in cells lacking endogenous JAK2, cannot sustain IFN-gamma-inducible gene expression, despite low level activation of STAT1 DNA binding activity. When expressed in wild-type cells, kinase-negative JAK2 acts as a dominant-negative inhibitor of the IFN-gamma response. Further analysis of the JAK/STAT pathway suggests a model for the IFN-gamma response in which the initial phosphorylation of JAK1 and JAK2 is mediated by JAK2, whereas phosphorylation of the IFN-gamma receptor is normally carried out by JAK1. The efficient phosphorylation of STAT 1 in the receptor-JAK complex may again depend on JAK2. Interestingly, a JAK1-dependent signal, in addition to STAT1 activation, appears to be required for the expression of the antiviral state.  相似文献   

2.
3.
Growth hormone (GH) and prolactin (PRL) binding to their receptors, which belong to the cytokine receptor superfamily, activate Janus kinase (JAK) 2 tyrosine kinase, thereby leading to their biological actions. We recently showed that GH mainly stimulated tyrosine phosphorylation of epidermal growth factor receptor and its association with Grb2, and concomitantly stimulated mitogen-activated protein kinase activity in liver, a major target tissue. Using specific antibodies, we now show that GH was also able to induce tyrosine phosphorylation of insulin receptor substrate (IRS)-1/IRS-2 in liver. In addition, the major tyrosine-phosphorylated protein in anti-p85 phosphatidylinositol 3-kinase (PI3-kinase) immunoprecipitate from liver of wild-type mice was IRS-1, and IRS-2 in IRS-1 deficient mice, but not epidermal growth factor receptor. These data suggest that tyrosine phosphorylation of IRS-1 may be a major mechanism for GH-induced PI3-kinase activation in physiological target organ of GH, liver. We also show that PRL was able to induce tyrosine phosphorylation of both IRS-1 and IRS-2 in COS cells transiently transfected with PRLR and in CHO-PRLR cells. Moreover, we show that tyrosine phosphorylation of IRS-3 was induced by both GH and PRL in COS cells transiently transfected with IRS-3 and their cognate receptors. By using the JAK2-deficient cell lines or by expressing a dominant negative JAK2 mutant, we show that JAK2 is required for the GH- and PRL-dependent tyrosine phosphorylation of IRS-1, -2, and -3. Finally, a specific PI3-kinase inhibitor, wortmannin, completely blocked the anti-lipolytic effect of GH in 3T3 L1 adipocytes. Taken together, the role of IRS-1, -2, and -3 in GH and PRL signalings appears to be phosphorylated by JAK2, thereby providing docking sites for p85 PI3-kinase and activating PI3-kinase and its downstream biological effects.  相似文献   

4.
5.
6.
Leptin receptors include a long form (OBRl) with 302 cytoplasmic residues that is presumed to mediate most or all of leptins signaling, and several short forms, including one (OBRs) that has 34 cytoplasmic residues, is widely expressed, and is presumed not to signal but to mediate transport or clearance of leptin. We studied the abilities of these two receptor isoforms to mediate signaling in transfected cells. In response to leptin, OBRl, but not OBRs, underwent tyrosine phosphorylation that was enhanced by co-expression with JAK2. In cells expressing receptors and JAK2, both OBRs and OBRl mediated leptin-dependent tyrosine phosphorylation of JAK2, and this was abolished with OBRs when the Box 1 motif was mutated. In cells expressing receptors, JAK2 and IRS-1, leptin induced tyrosine phosphorylation of IRS-1 through OBRs and OBRl. In COS cells expressing hemagglutinin-ERK1 and receptors, leptin increased ERK1 kinase activity through OBRl, with the magnitude increased by co-expression of JAK1 or JAK2, and to a lesser degree through OBRs, despite greater receptor expression. In stable Chinese hamster ovary cell lines expressing OBRs or OBRl, leptin stimulated endogenous ERK2 phosphorylation. Whereas leptin stimulated tyrosine phosphorylation of hemagglutinin-STAT3 and induction of a c-fos luciferase reporter plasmid through OBRl, OBRs was without effect in these assays. In conclusion, OBRl is capable of signaling to IRS-1 and mitogen-activated protein kinase via JAK, in addition to activating STAT pathways. Although substantially weaker than OBRl, OBRs is capable of mediating signal transduction via JAK, but these activities are of as yet unknown significance for leptin biology in vivo.  相似文献   

7.
8.
The high-affinity receptor (R) for IL-5 consists of a unique alpha chain (IL-5R alpha) and a beta chain (beta c) that is shared with the receptors for IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF). We defined two regions of IL-5R alpha for the IL-5-induced proliferative response, the expression of nuclear proto-oncogenes, and the tyrosine phosphorylation of cellular proteins including beta c, SH2/SH3-containing proteins and JAK2 kinase. In the studies described here, we demonstrate that IL-5, IL-3 or GM-CSF stimulation induces the tyrosine phosphorylation of JAK2, and to a lesser extent JAK1, and of STAT5. Mutational analysis revealed that one of the proline residues, particularly Pro352 and Pro355, in the membrane-proximal proline-rich sequence (Pro352-Pro353-X-Pro355) of the cytoplasmic domain of IL-5R alpha is required for cell proliferation, and for both JAK1 and JAK2 activation. In addition, transfectants expressing chimeric receptors which consist of the extracellular domain of IL-5R alpha and the cytoplasmic domain of beta c responded to IL-5 for proliferation and tyrosine phosphorylation of JAK1. Intriguingly, electrophoretic mobility shift assay analysis revealed that STAT5 was activated in cells showing either JAK1 or JAK2 tyrosine phosphorylation. These results indicate that activation of JAK1, JAK2 and STAT5 is critical to coupling IL-5-induced tyrosine phosphorylation and ultimately mitogenesis, and that Pro352 and Pro355 in the proline-rich sequence appear to play more essential roles in cell growth and in both JAK1/STAT5 and JAK2/STAT5 activation than Pro353 does.  相似文献   

9.
10.
11.
12.
13.
Signals propagated via the gp130 subunit of the interleukin-6 (IL-6)-type cytokine receptors mediate, among various cellular responses, proliferation of hematopoietic cells and induction of acute-phase plasma protein (APP) genes in hepatic cells. Hematopoietic growth control by gp130 is critically dependent on activation of both STAT3 and protein tyrosine phosphatase 2 (SHP-2). To investigate whether induction of APP genes has a similar requirement for SHP-2, we constructed two chimeric receptors, G-gp130 and G-gp130(Y2F), consisting of the transmembrane and cytoplasmic domains of gp130 harboring either a wild-type or a mutated SHP-2 binding site, respectively, fused to the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor. Rat hepatoma H-35 cells stably expressing the chimeric receptors were generated by retroviral transduction. Both chimeric receptors transmitted a G-CSF-induced signal characteristic of that triggered by IL-6 through the endogenous gp130 receptor; i.e., both activated the appropriate JAK, induced DNA binding activity by STAT1 and STAT3, and up-regulated expression of the target APP genes, those for alpha-fibrinogen and haptoglobin. Notwithstanding these similarities in the patterns of signaling responses elicited, mutation of the SHP-2 interaction site in G-gp130(Y2F) abrogated ligand-activated receptor recruitment of SHP-2 as expected. Moreover, the tyrosine phosphorylation state of the chimeric receptor, the associated JAK activity, and the induced DNA binding activity of STAT1 and STAT3 were maintained at elevated levels and for an extended period of time in G-gp130(Y2F)-expressing cells following G-CSF treatment compared to that in cells displaying the G-gp130 receptor. H-35 cells ectopically expressing G-gp130(Y2F) were also found to display an enhanced sensitivity to G-CSF and a higher level of induction of APP genes. Overexpression of the enzymatically inactive SHP-2 enhanced the signaling by the wild-type but not by the Y2F mutant G-gp130 receptor. These results indicate that gp130 signaling for APP gene induction in hepatic cells differs qualitatively from that controlling the proliferative response in hematopoietic cells in not being strictly dependent on SHP-2. The data further suggest that SHP-2 functions normally to attenuate gp130-mediated signaling in hepatic (and, perhaps, other) cells by moderating JAK action.  相似文献   

14.
15.
16.
GH has been shown to stimulate tyrosine phosphorylation of JAK2, several STAT proteins, insulin receptor substrate-1 (IRS-1), and SHC proteins in cultured cells. The goal of this study was to determine GH effects on protein tyrosine phosphorylation in liver and skeletal muscle of normal rats in vivo. Nonfasted male Sprague-Dawley rats (225-250 g) were injected with GH iv, and tissues were obtained after 5, 15, 30, or 60 min. At a maximally effective GH dose (1.5 mg/kg body weight), phosphotyrosine antibody immunoblots demonstrated marked stimulation of the tyrosine phosphorylation of JAK2 (maximal at 5 min) and a 95,000 Mr protein (maximal at 15 min) in both liver and skeletal muscle. The 95,000 Mr protein was recognized and immunodepleted by STAT5 antibody, but not by other STAT protein antibodies. Although basal tyrosine phosphorylation of IRS-1 and SHC was evident, GH did not stimulate tyrosine phosphorylation of either of these proteins in liver or skeletal muscle. In conclusion, GH stimulates the tyrosine phosphorylation of JAK2 and STAT5, but not IRS-1, SHC, or other STAT proteins in liver and skeletal muscle of normal rats. These results differ from findings in cultured cells and support the concept that selectivity for tyrosine kinase substrates is an important determinant of postreceptor signaling specificity in vivo.  相似文献   

17.
18.
19.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates the growth and function of several myeloid cell types at different stages of maturation. The effects of GM-CSF are mediated through a high affinity receptor that is composed of two chains: a unique, ligand-specific alpha chain and a beta common chain (beta c) that is also a component of the receptors for interleukin 3 (IL-3) and IL-5. Beta c plays an essential role in the transduction of extra cellular signals to the nucleus through its recruitment of secondary messengers. Several downstream signaling events induced by GM-CSF stimulation have been described, including activation of tyrosine kinases and tyrosine phosphorylation of cellular proteins (including beta c) and activation of the Ras/mitogen-activated protein kinase and the JAK/STAT pathways. A region within the beta c cytoplasmic tail (amino acids 517-763) has been reported to be necessary for tyrosine phosphorylation of the adapter protein, Shc, and for the subsequent GM-CSF-induced activation of Ras. In this paper, we describe a physical association between the tyrosine phosphorylated GM-CSF receptor (GMR)-beta c chain and Shc in vivo. Using a series of cytoplasmic truncation mutants of beta c and various mutant Shc proteins, we demonstrate that the N-terminal phosphotyrosine-binding (PTB) domain of Shc binds to a short region of beta c (amino acids 549-656) that contains Tyr577. Addition of a specific phosphopeptide encoding amino acids surrounding this tyrosine inhibited the interaction between beta c and shc. Moreover, mutation of a key residue within the phosphotyrosine binding pocket of the Shc-PTB domain abrogated its association with beta c. These observations provide an explanation for the previously described requirement for Tyr577 of beta c for GM-CSF-induced tyrosine phosphorylation of Shc and have implications for Ras activation through the GM-CSF, IL-3, and IL-5 receptors.  相似文献   

20.
The rat luteal 20alpha-hydroxysteroid dehydrogenase plays a key role at catabolizing progesterone and at decreasing the level of this steroid secreted by the ovaries. Throughout pregnancy and before parturition neither the mRNA nor the protein for this enzyme could be detected. In this investigation we set to examine whether PRL and PRL-like hormone from placental origin silence the expression of this gene and whether PRL action involves tyrosine kinase activity and/or de novo protein synthesis. The results revealed that PRL and PRL-like hormone from rat placental origin (rPL-1 and rPL-2), but not rat growth hormone, caused a rapid and profound inhibition of 20alpha-HSD mRNA expression in highly luteinized granulosa cells. Immunoprecipition and western blot analysis indicate that PRL-R associates with JAK2 and Stat5, and this association is increased within 30 seconds with PRL treatment. Although both JAK2 and Stat5 were phosphorylated on tyrosine upon PRL treatment, the PRL mediated inhibition of 20alpha-HSD was not reversed by either tyrosine kinase inhibitors, AG18 and genistein, but was largely reversed by the protein synthesis inhibitor cycloheximide. In summary, results of this investigation indicate that although PRL can activate the JAK2/Stat5 system in the corpus luteum, the down regulation of 20alpha-HSD mRNA by PRL does not appear to involve tyrosine kinase activity but depends on de novo synthesis of protein(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号