首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A clearer understanding of arsenic (As) retention and transport in forest soils impacted by copper smelter emissions may reduce risks to human health and provide insight into As behavior in the vadose zone. On Vashon-Maury Island in Puget Sound, As is predominantly associated with the fine (< 63 microm) fraction of surficial soils. X-ray diffraction of oriented samples from the < 2 microm size fraction indicate that clinochlore isthe dominant phyllosilicate. X-ray absorption spectroscopy (XAS) was employed to examine As oxidation state and local coordination environment in impacted soil samples. Arsenic is present as As(V) in tetrahedral coordination with oxygen, associated with aluminum (Al) octahedra in bidentate binuclear (bridging) structures with As-Al distances of 3.15 - 3.16 angstroms. Including multiple scattering (MS) paths derived from the arsenate tetrahedron in esperanzaite significantly improved the match between XAS fine structure (EXAFS) data and models generated from theoretical phase and amplitude functions. The data are interpreted to indicate arsenate adsorption onto poorly crystalline aluminum oxyhydroxides and/or the edges of clinochlore interlayer hydroxyl sheets with constrained geometries causing MS to be important This implies that As initially released from the smelter as particulate As(III) and As(V) oxides was oxidized, dissolved, and adsorbed onto soil minerals and colloids; no evidence for relic arsenic oxide was observed. Physical transport of arsenic oxide particles and As adsorbed on soil colloids may account for limited downward migration of As within the soil column. The oxidizing and mildly acidic pH conditions in the upper vadose zone promote stable sorption complexes; barring substantial changes in soil chemistry, As is not expected to experience significant mobilization.  相似文献   

2.
The fate of organic herbicides applied to agricultural fields may be affected by other soil amendments, such as copper applied as a fungicide. The effect of copper on the leaching of diuron and glyphosate through a granitic and a calcareous soil was studied in the laboratory using sieved-soil columns. Each soil was enriched with copper sulfate to obtain soil copper concentrations of 125, 250, 500, and 1000 mg kg(-1). Glyphosate leaching was influenced by soil pH and copper concentration, whereas diuron leaching was not. In the calcareous soil, glyphosate leaching decreased as copper levels increased from 17 mg kg(-1) (background) to 500 mg kg(-1). In the granitic soil, glyphosate leaching increased as copper levels increased from 34 mg kg(-1) (background) to 500 mg kg(-1). The shapes of the copper elution curves in presence of glyphosate were similar to shapes of the glyphosate curves, suggesting the formation of Cu-glyphosate complexes that leach through the soil. Soil copper concentration does not influence diuron leaching. In contrast, increasing copper concentrations reduces glyphosate leaching through calcareous soils, and conversely, increases glyphosate leaching through granitic soils. Our findings suggest that the risk of groundwater contamination by glyphosate increases in granitic soils with elevated copper concentrations.  相似文献   

3.
The potential of mid-infrared (MIR) spectroscopy in combination with partial least-squares (PLS) regression was investigated to predict the soil sorption (distribution) coefficient (K(d)) of a nonionic pesticide (diuron). A calibration set of 101 surface soils collected from South Australia was utilized for reference sorption data and MIR spectra. Principal component analysis (PCA) was performed on the spectra to detect spectral outliers. The MIR-PLS model was developed and validated by dividing the initial data set into four validation sets. The model resulted in a coefficient of determination (R2) of 0.69, a standard error (SE) of 5.57, and a residual predictive deviation (RPD) of 1.63. The normalized sorption coefficient for the organic compound (K(oc)) approach, on the other hand, resulted in R2, SE, and RPD values of 0.42, 7.26, and 1.25, respectively. However, the significant statistical difference between the two models was mainly due to two outliers detected via PCA. Apart from spectral outliers, the performance of the two models was essentially similar for the rest of the calibration set. Outlier detection by the MIR-PLS model may gainfully be employed as a tool for improving prediction of K(d). The MIR-based model can provide a direct estimation of K(d) values based on the integrated properties of organic and mineral matter reflected in the infrared spectra.  相似文献   

4.
5.
6.
High-resolution nitrogen (77 K) and carbon dioxide (273 K) adsorption at subatmospheric pressures has been studied for a range of model soils of various origins with different organic matter (OM) contents. It is demonstrated that N2 and CO2 molecules probe different regions of soil particles. Nitrogen is adsorbed primarily on the outer surface of soil particles, while CO2 has a higher affinity to OM domains. Low-pressure nitrogen adsorption reveals that soil particle surfaces consist of clay/mineral domains with discrete patches of OM. A linear correlation has been found between the CO2 uptake and the amount of organic carbon reduced per unit of the external surface area. A new method for discriminating the microporosity of soil particles and accessibility of OM has been proposed.  相似文献   

7.
The removal of polycyclic aromatic hydrocarbons (PAHs) from soil is costly and time-consuming. The high hydrophobicity of PAHs makes PAH diffusion from soil particles by hydraulic flow difficult. The phase transfer of PAHs from soil to another available mediator is crucial for PAH removal. This study focuses on the remediation of PAH-contaminated shoal soil, located in Yangtze, China, using three types of laccase-carrying electrospun fibrous membranes (LCEFMs) fabricated via emulsion electrospinning. These LCEFMs were composed of core-shell structural nanofibers (for PAH adsorption), with laccase in the core (for PAH degradation) and pores on the shell (for mass transfer). The LCEFMs with strong adsorptivity extracted the PAHs from the soil particles, resulting in an obvious enhancement of PAH degradation. The removal efficiencies in 6 h for phenanthrene, fluoranthene, benz[a]anthracene and benzo[a]pyrene were greater than 95.1%, 93.2%, 79.1%, and 72.5%, respectively. The removal half-lives were 0.003-1.52 h, much shorter than those by free laccase (17.9-67.9 h) or membrane adsorption (1.25-12.50 h). The third-order reaction kinetics suggested that the superficial adsorption and internal diffusion were the rate-limiting steps of the overall reaction. A synergistic effect between adsorption and degradation was also proposed on the basis of the triple phase distribution and kinetics analyses.  相似文献   

8.
进行了热改性凹凸棒粘土对亚甲基蓝的吸附热力学和动力学性能研究。实验表明:在初始染料质量浓度为50~600mg/L、温度为298~338K时,热改性凹凸棒粘土对亚甲基蓝的吸附符合Langmuir等温吸附方程,△H为1.92 KJ/mol,△G在-25.429~-29.097 KJ/mol之间,△S大于零,此过程为一自发的吸热过程;其吸附动力学数据符合准二级速率方程,吸附表观活化能分别为13.5676 KJ/mol。提出了热改性凹凸棒粘土对亚甲基蓝的吸附过程是由膜扩散和化学吸附共同控制的观点。  相似文献   

9.
A novel model has been developed to describe the kinetics of Zn adsorption and desorption to soils. The model incorporates the mechanistic-based equilibrium model WHAM (Windermere humic aqueous model) to account for the chemical variation during the reaction (e.g., pH and Zn2+ concentration), the heterogeneity of binding sites of soil organic matter (SOM), and the nonlinear binding of Zn to SOM. To test the model, kinetic experiments were conducted using a stirred-flow method. Six soils, with low clay fractions and covering a wide range in SOM concentrations, and various Zn concentrations and pHs were studied. Under these experimental conditions, SOM is found to be the major adsorbent for Zn binding. The fast and slow Zn reactions with soils were associated, respectively, with the monodentate and bidentate binding sites of humic substances in WHAM. The model has only three fitting parameters, the two desorption rate coefficients for the fast (monodentate) and slow (bidentate) reaction sites which are constant and independent of soil type, and the reactive organic matter fraction of the total SOM in each soil. All other parameters are derived from WHAM. The model is able to predict Zn release from spiked soils including the effects of Ca competition.  相似文献   

10.
The validity of activity ratio measurements for potassium, and ion potential measurements for phosphate as criteria for the availability of these nutrient elements to blade currants and strawberries growing in the field was compared with the results obtained by determinations of exchangeable potassium and acetic acid-soluble phosphorus for three different soils. The correlations between soil nutrient values and uptake by the plants, as evidenced by leaf nutrient content, were similar for each element irrespective of which method was used, so that for the particular field experiments concerned there would appear to be no advantage in replacing the straightforward extraction determinations by ion activity determinations for diagnostic purposes.  相似文献   

11.
The emission of nitrous oxide to the atmosphere was measured for 2 years (1977-79) from two clay soils (Denchworth and Lawford series) that had either been directdrilled or ploughed. On almost all sampling occasions the emission from directdrilled plots exceeded that from the ploughed plots by factors ranging up to 15-fold. Rates of nitrous oxide loss reached peaks of 2.5-3.0 mg N m-2 h-1 (equivalent to 0.6-0.7 kg N ha-1 day-1) from the direct-drilled plots on the Denchworth soil. Emissions of nitrous oxide from the Lawford soil were only 10-20% of those from the Denchworth soil. The total amount of nitrous oxide-N lost during each year from the Denchworth soil was estimated to be 5.4-8.6 kg N ha-1 from the direct-drilled plots and 0.9-5.6 kg N ha-1 from the ploughed plots.  相似文献   

12.
Previous research with phenolic, carboxylic, and urea type organic acids demonstrated that hydrophilic sorption was primarily due to anion exchange, which was linearly correlated to chemical acidity (pKa) and the soil anion exchange capacity. However, for dichlorophenoxyacetic acid (2,4-D), sorption by a kaolinitic soil was much higher than expected relative to all other organic acid-soil data. The enhanced sorption was hypothesized to involve calcium bridging of 2,4-D to hydrophilic domains. In this study, the mechanisms contributing to 2,4-D sorption by variable-charged soils were probed and quantified by measuring sorption from CaCl2, KCl, CaSO4, KH2PO4, and Ca(H2PO4)2 solutions. Linear sorption coefficients estimated for 2,4-D sorption from the different electrolytes decreased as follows: CaCl2 > KCl > CaSO4 > Ca(H2PO4)2 approximately equal to KH2PO4. Differences in 2,4-D sorption from CaCl2 and phosphate solutions were attributed to sorption by hydrophilic domains, which ranged between 46 and 94% across soils. Differences in 2,4-D sorption from CaCl2 and KCl were attributed specifically to Ca-bridging between 2,4-D's carboxyl group and the silanol edge on kaolinite and quartz and ranged from negligible to 40% depending on the soil mineral type. Differences in sorption from CaCl2 and CaSO4 was attributed to anion exchange, which ranged from 16 to 91%, followed the trends with pKa developed previously for other organic acids, and correlated well to the soil anion to cation exchange capacity ratio (AEC/CEC). The sum of anion exchange and Ca-bridging contributions agreed well with the sorption estimated to be from hydrophilic domains. All other sorption was attributed to hydrophobic processes, which correlated well to a linear free-energy relationship between pH-dependent organic carbon-normalized sorption coefficients and pH-dependent octanol-water partition coefficients developed for several other organic acids.  相似文献   

13.
The amounts of soil P extracted by the methods of Olsen P, Bray-P1, Williams and Stewart, Morgan, Aslyng, anion exchange resin, Saunder, Dyer, and North Carolina were significantly interrelated. P fractionation studies indicated that a relatively high proportion of the inorganic P was accounted for by iron-bound and reductant-soluble P fractions. The most important variable contributing to the total variation in the regressions of equilibrium phosphate potential and Morgan-P values was the saloid-bound P fraction. Al-P was the major source of variation in Dyer-P, North Carolina P, Olsen-P, Bray-P1, resin extractable P, and acetic acid soluble P values. The extraction of Al-P by the chemical soil tests was in the decreasing order of Dyer-P > North Carolina P>0.1M-NaOH-extractable P>0.5m-CH3 COOH > Olsen-P >Bray-P1 anion exchange resin. Fe-P was the second most important variable contributing to the total variation in 0.1M-NaOH extractable P, Olsen-P, North Carolina P, resin extractable P and Dyer-P values. Practical implications of the findings were discussed.  相似文献   

14.
Long-term adsorption of phenanthrene to soils was characterized in a silt-loam (LHS), a sandy soil (SBS), and a podzolized soil (CNS) by use of the Polanyi-Manes model, a Langmuir-type model, and a black carbon-water distribution coefficient (K(BC)) at a relative aqueous concentration (C(e)/S(w)) of 0.002-0.32. Aqueous desorption kinetic tests and temperature-programmed desorption (TPD) were also used to evaluate phenanthrene diffusivities and desorption activation energies. Adsorption contribution in soils was 48-70% after 30 days and 64-95% after 270 days. Significant increases in adsorption capacity with aging suggest that accessibility of phenanthrene to fractions of SBS soil matrix was controlled by sorptive diffusion at narrow meso- and micropore constrictions. Similar trends were not significant for LHS silt-loam or CNS podzol. Analysis of TPD profiles reveal desorption activation energies of 35-53 kJ/mol and diffusivities of 1.6 x 10(-7-)9.7 x 10(-8) cm2/s. TPD tests also indicate that the fraction of phenanthrene mass not diffusing from soils was located within micropores and narrow width mesopores with a corresponding volume of 1.83 x 10(-5-)6.37 x 10(-5) cm3/g. These values were consistent with the modeled adsorption contributions, thus demonstrating the need for such complimentary analytical approach in the risk assessment of organic contaminants.  相似文献   

15.
通过静态试验研究有机粘土对酸性染料废水的吸附行为,采用XRD对有机粘土进行表征.研究了pH值、有机粘土用量及废水质量浓度对吸附效果的影响,并对其吸附机理进行初步探讨.得出了有机粘土吸附酸性染料废水的优化条件:当有机粘土用量为1.5 g、废水初始CODCr为3 578 mg/L时,有机粘土吸附量为91.80 mg/g,CODCr去除率为76.97%.在溶剂化效应和分配作用的共同作用下,有机粘土对酸性染料废水的吸附等温线呈S型.酸性条件有利于有机粘土对酸性染料废水的吸附.有机粘土多次吸附酸性染料废水后仍有吸附能力,随着吸附次数的增加,有机粘土对污染物的吸附量逐渐降低.  相似文献   

16.
Nitroaromatic compounds enter the environment through their use as explosives, pesticides, solvents, and synthetic intermediates in the manufacturing of dyes, perfumes, and drugs. Recent studies have found that many nitroaromatic compounds are strongly retained by smectites, especially K+-saturated smectites. Sorption occurs when nitroaromatic compounds replace water associated with the clay and form complexes between K+ and -NO2 groups. This study seeks to further understand nitroaromatic-clay interactions from the viewpoint of energetics. Adsorption isotherms of 1,3-dinitrobenzene, 1,4-dinitrobenzene, and 1,3,5-trinitrobenzene from aqueous solution by K+- and Ca2+-saturated smectite (SWy-2) were measured at several temperatures between 4 degrees C and 37 degrees C to determine the molar differential adsorption enthalpies. Adsorption was found to be an exothermic process on both homoionic K+- and Ca2+-smectite. The smaller adsorption enthalpy on Ca-SWy-2 was consistent with its much smaller adsorption capacity for nitroaromatics compared to K-SWy-2. Our best estimate forthe enthalpy of 1,3,5-trinitrobenzene interactions with K-SWy-2 is -124 kJ/mol, which is referenced to gas-phase 1,3,5-trinitrobenzene, corrected forthe displacement of interlayer water, and can be directly compared with quantum chemical enthalpies from the literature. Our comparable estimates for 1,3- and 1,4-dinitrobenzene interaction enthalpies are near -90 kJ/mol. We conclude that our adsorption enthalpy results are consistent with the hypothesis that nitroaromatic compounds are sorbed strongly by K-smectites because they form inner- and/or outer-sphere complexes with K+ cations in clay interlayers. Indeed, the basal spacings of rewetted clay films in the presence of nitroaromatic compounds imply that water molecules cannot effectively compete with the adsorbed nitrobenzenes for reactive sites on K-SWy-2.  相似文献   

17.
Five activated carbons (ACs) and two biochars were tested as amendments to reduce the availability of aged polychlorinated dibenzo-p-dioxin/dibenzofurans (PCDD/Fs) in two soils. All sorbents (ACs and biochars) tested substantially reduced the availability of PCDD/Fs measured by polyoxymethylene (POM) passive uptake and earthworm (E. fetida) biouptake. Seven sorbents amended at a level of 0.2 × soil total organic carbon (0.2X) reduced the passive uptake (physicochemical availability) of total PCDD/Fs in POM by 40% to 92% (or toxic equivalent by 48% to 99%). Sorbents with finer particle sizes or more macropores showed higher reduction efficiencies. The powdered regenerated AC and powdered coconut AC demonstrated to be the most effective and the two biochars also performed reasonably well especially in the powdered form. The passive uptake of PCDD/F in POM increased approximately 4 to 5 fold as the contact time between POM and soil slurry increased from 24 to 120 d while the efficacy of ACs in reducing the physicochemical availability remained unchanged. The reduction efficiencies measured by POM passive uptake for the regenerated AC were comparable to those measured by earthworm biouptake (bioavailability) at both dose levels of 0.2X and 0.5X. The biota-soil accumulation factor (BSAF) values for unamended soil ranged from 0.1 for tetra-CDD/F to 0.02 for octa-CDD/F. At both dose levels, the regenerated AC reduced the BSAFs to below 0.03 with the exception of two hexa-CDD/Fs. The reduction efficiencies measured by earthworm for coconut AC and corn stover biochar were generally less than those measured by POM probably due to larger particle sizes of these sorbents that could not be ingested by the worms.  相似文献   

18.
采用A、B、C、D、E、F、G 7种活性白土吸附脱除精炼鱼油中的胆固醇,结果表明活性白土G脱除胆固醇效果最好。选择活性白土G为吸附剂,以胆固醇脱除率为指标,考察了吸附温度、活性白土用量和吸附时间对胆固醇脱除率的影响。在单因素实验的基础上,通过正交实验优化了脱除工艺条件,得出最佳工艺条件为:真空条件下,吸附温度180℃,活性白土用量7%(油质量),吸附时间45 min。在最佳条件下,鱼油中胆固醇脱除率达72.89%。  相似文献   

19.
20.
A standardized quantitative approach was developed to reliably elucidate the effect of increasing soil moisture on pesticide mineralization. The mineralization of three aerobically degradable and chemically different 14C-labeled pesticides (isoproturon, benazolin-ethyl, and glyphosate) was studied under controlled conditions in the laboratory at an identical soil density of 1.3 g cm(-3). The agricultural soils used are characterized by (i) large variations in soil texture (sand content 4-88%) and organic matter content (0.97-2.70% org. C), (ii) fairly diverse soil-water retention curves, and (iii) differing pH values. We quantified the effect of soil moisture on mineralization of pesticides and found that (i) at soil water potential < or = -20 MPa minimal pesticide mineralization occurred; (ii) a linear correlation (P < 0.0001) exists between increasing soil moisture (within a soil water potential range of -20 and -0.015 MPa), and increased relative pesticide mineralization; (iii) optimum pesticide mineralization was obtained at a soil water potential of -0.015 MPa, and (iv) when soil moisture approximated water holding capacity, pesticide mineralization was considerably reduced. As both selected pesticides and soils varied to a large degree, we propose that the correlation observed in this study may be also valid in the case of aerobic degradation of other native and artificial organic compounds in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号