首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanosized solid superacids SO4 2−/TiO2 and S2O8 2−/TiO2, as well as MCM-41-supported SO4 2−/ZrO2, were prepared. Their structures, acidities, and catalytic activities were investigated and compared using XRD, N2 adsorption-desorption, and in situ FTIR-pyridine adsorption, as well as an evaluation reaction with pseudoionone cyclization. The results showed that SO4 2−/TiO2 and S2O8 2−/TiO2 possess not only nanosized particles with diameters < 7.0 nm, a BET surface greater than 140 cm2/g and relatively regular mesostructures with pores around 4.0 nm, but also a pure anatase phase and strong acidity. Different from the Lewis acid nature of SO4 2−/ZrO2/MCM-41, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibit mainly Bronsted acidities. The strongest Bronsted acid sites were produced on SO4 2−/TiO2 promoted with H2SO4, while Lewis acid sites on S2O8 2−/TiO2 even stronger than those on SO4 2−/ZrO2/MCM-41 were generated when persulfate solution was used as sulfating agent. Because of their distinct acid natures, SO4 2−/TiO2 and S2O8 2−/TiO2 exhibited catalytic activities for the cyclization of pseudoionone that were much higher than that of SO4 2−/ZrO2/MCM-41. It can be concluded that the existence of more Br?nsted acid sites was favorable for proton participation in the cyclization reaction. Translated from Journal of Chemical Engineering of Chinese Universities, 2006, 20(2): 239–244 [译自: 高校化学工程学报]  相似文献   

2.
The concentration and the type of Cu2+ species adsorbed on a natural zeolite (Clinoptilolite) was measured and studied by using Electron Paramagnetic Resonance Spectroscopy (EPR). The EPR results together with macroscopic sorption data indicate that the solution ionic strength as well as, the type of electrolyte anion (Cl, NO3 and SO42− ions were examined) affect the amount of Cu adsorbed and the type of Cu surface complexes. The increasing in solution pH affects Cu adsorption quantitatively whereas; the type of surface complexes formed depends mainly on solution ionic strength. For low solution ionic strength, when the inhibition from solution species is limited, the adsorbed Cu is characterized by more than one type of chemical environment. On the contrary, for high solution ionic strength the Cu adsorption is inhomogeneous and EPR spectra show only one type of surface complex. When the anions of the background electrolytes are different, but of equal normality, the results indicate that in the presence of SO42− discernible Cu surface complexes are formed whereas, for Cl and NO3 these surface formations are obtained only for high Cu adsorbed concentrations.  相似文献   

3.
Barium, lanthanum, and praseodymium perovskites were prepared by malic acid complexation. Surface areas of the La and Pr perovskites were between 17.1 and 21.6 m2 g−1. The moderate low surface areas (5.7 m2 g−1) observed for corresponding barium perovskites were due to the high calcination temperatures. The calcination temperature also affected the shapes and sizes of the perovskite particles. According to SEM images the nanoparticles of the La and Pr perovskites were spherical, whereas those of barium perovskites were flakes. The conversion of methane increased in the order of A-site metal Ba < Pr < La. The CH4 conversion after SO2 treatment correlated with size of the perovskite particles: the smaller the particles the better the activity. The highest methane conversion after SO2 treatment was achieved with lanthanum perovskite with B-site metal combination Mn0.4Fe0.6.  相似文献   

4.
The widespread application of elemental sulfur (S0) to vineyards may have ecosystem effects at multiple scales. We evaluated the short-term fates of applied S0 in a Napa Valley vineyard; we determined changes in soil sulfur (S) speciation (measured by X-ray absorption near-edge structure (XANES) spectroscopy), soil pH, extractable sulfate (SO4 2−), and total S to evaluate changes in acidity and soil S within the vineyard over time. Surface soil samples were collected immediately prior to and following two applications of S0 (6.7 kg S0 ha−1), with weekly collections in the 2 weeks between applications and following the last application. XANES spectra indicated that the majority of soil S persists in the +6 oxidation state and that S0 oxidizes within 7 days following application. Soil pH and extractable SO4 2− measurements taken at 30 min after S0 application revealed generation of acidity and an increase in extractable SO4 2−, but by 12 days after application, soil pH increased to approximately pre-application levels. These data suggest that the major consequence of reactive S applications in vineyards may be the accumulation of soil SO4 2− and organic S during the growing season, which can be mobilized during storm events during the dormant (wet) season. In spatially-extensive winegrowing regions where these applications are made by hundreds of individual farmers each year, it will be important to understand the long-term implications of this perturbation to the regional S cycle.  相似文献   

5.
The influence of Cl and SO42− on the electrochemical behavior of AZ91D, AZCe2, and AZLa1 was studied. For all alloys, there was a current plateau in the anodic polarization curves in Na2SO4 solutions. In 0.5% NaCl solution, there was a small current plateau, whereas there was none in the 3.5% and 5% NaCl solutions. This indicated that SO42− is less aggressive than Cl. The range of the current plateau decreased with increasing SO42− concentration. For all alloys, the high frequency capacitive loop in the Nyquist plots decreased with increasing concentration consistent with the decrease in corrosion resistance with increasing Cl and SO42− concentration.  相似文献   

6.
Surface analysis by X-ray photoelectron spectroscopy (XPS) has shown specific 1∶1 (ionic) interaction between cationic alkyl quaternary surfactant molecules and the anionic sulfonate groups present on the hair surface. The primary driving force for the adsorption of alkyl quaternary amine molecules to the surface of the hair from aqueous solution is the ionic interaction between quaternary groups and the surface SO3 on the hair. Cationic quaternary molecules incorporating ester and alcohol functionalities (ester quats) demonstrate a lower number of surface quaternary nitrogens per sulfonate group, indicating an altered surface interaction mechanism. For the ester quats, a combination of electrostatic interaction modes exists in addition to the ionic N+/SO3 interaction, specifically, H-bonding interactions of the −C−O, −C−OH, and −C(O)O− polar groups with SO3 and other polar groups on the hair. Surface coverage of the ester quat is not reduced despite the decrease in ionic interaction at the surface. Both types of molecules orient their alkyl tails toward the surface. Molecular dynamics modeling of the surfactant/hair surface interaction indicates higher adsorption energies due to increased dipolar interactions for ester quat molecules.  相似文献   

7.
Photocathodic stripping of a pre-deposited tellurium film on a gold electrode in 0.1 M Na2SO4 electrolyte containing Cd2+ ions and poly(vinyl pyrrolidone) (PVP) was used as a route to the photoelectrosynthesis of CdTe nanoparticles. Thus illumination of a Te-modified gold surface generated Te2− species, which were removed from the surface into the bulk electrolyte containing Cd2+and PVP by vigorous stirring. The reaction of Te2−and Cd2+ produced PVP-protected nanosized CdTe particles dispersed in solution in the size range 20–40 nm. In this approach, PVP played a critical role as a stabilizer to form discrete CdTe particles instead of larger (agglomerated) ones. Electrochemical quartz crystal microgravimetry was used to monitor stripping of Te films during the light illumination and the synthesized CdTe nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray analyses and laser Raman spectroscopy.  相似文献   

8.
The enhancement mechanism of SO2 removal by the presence of NO2 under low temperature and humid conditions was studied in a fixed bed reactor system. The presence of NO2 in the flue gas can enhance SO2 removal. The interaction between SO2 and NO2 in gas phase could not explain the effect of NO2 on SO2 removal under low-temperature and humid conditions. When Ca(NO3)2 and Ca(NO2)2 as additive were added on the surface of sorbent, the desulfurization activity of sorbent decreased. However, the sorbent pretreated by NO2 for a moment has higher SO2 removal. The oxidization of SO32− to SO42− and the evolution of sorbent surface structure in the presence of NO2 can explain the enhancement of SO2 removal by the presence of NO2. HSO3 and SO3 reacted with NO2 to form sulfate, which can accelerate the hydrolysis of SO2. The reaction between NO2 and Ca(OH)2 can make the unreacted sorbet under the SO2 removal product exposed to the reactant gas.  相似文献   

9.
We investigated the effect of allyl thiourea (ATU) on both the electrodeposition and electrodissolution of copper in aqueous sulfuric acid by combining cyclic voltammetry (CV) with electrochemical quartz crystal microbalance (EQCM) studies and surface enhanced Raman spectroscopy (SERS). The results demonstrated that the two-electron transfer reaction is the predominant process for the copper dissolution–deposition process in 1.0 M H2SO4 solution not containing ATU in the potential range −0.65 to 0.05 V versus SCE. In comparison, the copper dissolution–deposition process in 1.0 M H2SO4 solution containing ATU corresponds to a one-electron transfer reaction. The spectral features observed from the SERS studies showed at molecular level that ATU can be adsorbed tilted to the copper electrode surface and that coordination occurs via the sulfur atom. The secondary amino group is nearer to the surface than the primary amino group. SO42− and HSO4 can be coadsorbed on the protonated −NH (CH2CHCH2) groups.  相似文献   

10.
The conductive polymer poly(neutral red) polymerized on a graphite electrode (PNR/graphite) as a support material was used for catalytic oxidation of ethanol in acidic solution and investigated by electrochemical methods. Pt particles loaded on the surface of PNR/graphite electrode exhibited higher electrocatalytic activity for ethanol oxidation in comparison with Pt particles supported directly on graphite. With the equivalent loading mass of Pt catalyst, the special activity (S A ) at peak a of the Pt/PNR/graphite electrode polymerized for 10 cycles in 5 × 10−4 M NR + 0.5 M H2SO4 solution is 3,478 A C−1 and about 2.20 times higher than that of the Pt/graphite electrode (1,582 A C−1). The results show that the electrochemical performance of Pt catalyst for ethanol oxidation is improved by the addition of PNR  相似文献   

11.
A water-in-oil (W/O) microemulsion, consisting of sodium dodecyl sulphate (SDS)/1-pentanol/water/heptane, has been used as mobile phase for the separation of inorganic anions from their binary mixtures, for example, IO 4 -NO 2 , IO 4 -BrO 3 , IO 4 -I, MnO 4 -BrO 3 , MnO 4 -NO 2 , and MnO 4 -Br. The weight ratio, SDS/n-pentanol was kept constant at 1/2.46 for all compositions. The retention efficiency of anions on layers of silica gel G, alumina, microcrystalline cellulose, kieselguhr G, and mixtures of kieselguhr and cellulose in 4:1 and 3:2 ratios has been examined with the W/O microemulsion system as a mobile phase. Thin layers of kieselguhr were most useful for differential migration of anions. Quantitative separation of IO 4 from accompanying ions, limits of identification, and dilution of few anions are reported. The effects of amines, phenols, and heavy metals on the separation efficacy of IO 4 also have been investigated.  相似文献   

12.
Solid acid catalysts of SO42−/TiO2/MCM-41 and S2O82−/TiO2/MCM-41 were prepared via grafting method and sulfate/persulfate promotion. The catalysts exhibited desirable activity and better selectivity for cyclization reaction of pseudoionone compared to traditional SO42−/TiO2. A combination of XRD, N2 adsorption–desorption and FTIR spectroscopy indicated that the catalysts possess well-ordered mesostructure, and the grafted TiO2 are in highly dispersed amorphous form rather than crystalline phase. For S2O82−/TiO2/MCM-41 higher S content and more Br?nsted acid sites can be achieved by persulfation, which is favorable for the protons participated cyclization reaction. The similar Si–O–Ti–O–S=O structure of all acid sites on pore surface of the catalysts is attributed to the improvement of selectivity in comparison with SO42−/TiO2.  相似文献   

13.
The goal was to remove arsenate species in the presence of competitive anions by coupling of liquid-phase polymer-based retention, LPR, a procedure based on the selective As(V) adsorption properties of cationic water-soluble polymers, with an electro-catalytic oxidation process (EO) of As(III) into its more easily removable As(V). The electro-catalytic oxidation of As(III) to As(V) was performed with an organic supporting electrolyte, poly[3-(methacryloylamine)propyl)]trimethyl ammonium chloride, P(ClMPTA), which is recognized as an efficient reagent in removing divalent arsenate species. The bulk electro-catalytic conversion of As(III) to As(V) was carried out with a Pt-gauze electrode, and the resulting mixtures were introduced into a LPR cell to remove the As(V)-polymer adducts. Using P(ClMPTA) and ammonium salts at a 20:1 polymer:As(III) molar ratio at pH 8, complete (100%) Arsenic retention was achieved. For binary mixtures of Arsenic with competitive anions (e.g., SO4 2−, HPO4 2−, NO3 , and NO2 ), the retention profile varied in the range 100–70%. In addition, the As(V) retention efficiency was found to be directly related to the consumed charge in the mol ratio As(III) in solution with competitive anionic species.  相似文献   

14.
Electrochemical gold deposition from sulfite solutions was studied by means of voltammetry, EIS and EQCM. A gold film electrode was used for polyaniline layer formation by electrochemical oxidation of aniline. The standard electrochemical reduction potential of the reaction [Au(SO3)2]3− + e = Au + 2 SO32− was determined, and is equal to 0.116 V (vs. NHE). Both solution stirring and temperature increase accelerate the electrochemical reduction of gold, when the electrode potential is below −0.55 V. When the potential is above −0.55 V the electrochemical reduction proceeds via passive layer formation. Our study suggests that the passive layer consists of chemically adsorbed sulfite ions and sulfur. The gold film deposited from sulfite solution is a high quality substrate suitable for conducting polymer layer formation. This technique, where a polymer layer electrode is prepared by thin gold film deposition onto a metal surface and by subsequent polymer layer formation, can be applied in sensor research and technology.  相似文献   

15.
Ni–Nb composite electrocoatings were obtained on carbon steel from Watts bath, containing suspended 20 μm size niobium powders. The effect of cathodic current density, electrolyte stirring rate and concentration of Nb particles in the bath on the deposit morphology and texture, volume fraction of co-deposited Nb particles and microhardness was investigated. The Ni–Nb composite layers presented a rough morphology with randomly oriented Ni grains, whereas pure Ni coatings obtained under the same experimental conditions were smooth and showed highly preferred orientation in the [110] or [100] direction. Stirring rate of the electrolyte and concentration of Nb particles in the bath are the main parameters affecting the incorporation of Nb particles. The Nb incorporated volume fraction was 11–14%, 17–19%, 27–32% and 34–37% for the 20 g L−1 Nb/550 rpm, 20 g L−1 Nb/400 rpm, 40 g L−1 Nb/400 rpm and 40 g L−1 Nb/550 rpm conditions, respectively. The microhardness of the Ni–Nb composite coatings obtained at 20 and 40 mA cm−2 was higher than that of pure Ni layers, due to grain refining. Incorporation of Nb particles in Ni coatings improved the corrosion resistance of the deposits in NaCl and H2SO4 solutions.  相似文献   

16.
Cyclic voltammograms, current transients at constant potential and potential decay transients have been used to study the formation of lead dioxide surface films in the presence of cobalt ions and their role in decreasing the oxidation rate of a lead alloy under steady state conditions typical of copper electrowinning. The observations in the present work indicate, consistent with the surface film model, that the formation of a continuous PbSO4 + α-PbO2 film on the surface of the lead alloy in the presence of cobalt ions hinders further oxidation of the metal. The protectiveness of the film is dynamic in the steady state; the film is continuously forming and dissolving. Also studied was the potential of the oxygen evolution reaction on α-PbO2 and β-PbO2 in 170 g L−1 H2SO4 with and without cobalt ions. The steady state potential for oxygen evolution on β-PbO2 in 170 g L−1 H2SO4 at 285 A m−2 decreased in the presence of cobalt ions and the steady state potential of β-PbO2 was essentially the same as that of (i) the Pb–Ca–Sn alloy and (ii) α-PbO2. The implication is that the potential of the Pb–Ca–Sn alloy is determined by the α-PbO2 and/or β-PbO2 on its surface.  相似文献   

17.
Prussian Blue-modified graphite electrodes (G/PB) with electrocatalytic activity toward H2O2 reduction were obtained by PB potentiostatic electrodeposition from a mixture containing 2.5 mm FeCl3 + 2.5 mm K3[Fe(CN)6] + 0.1 m KCl + 0.1 m HCl. From cyclic voltammetric measurements, performed in KCl aqueous solutions of different concentrations (5 × 10−2–1 m), the rate constant for the heterogeneous electron transfer (k s) was estimated by using the Laviron treatment. The highest ks value (10.7 s−1) was found for 1 m KCl solution. The differences between the electrochemical parameters of the voltammetric response, as well as the shift of the formal potential, observed in the presence of Cl and NO3 compared to those observed in the presence of SO42− ions, points to the involvement of anions in the redox reactions of PB. The G/PB electrodes showed a good electrochemical stability proved by a low deactivation rate constant (0.8 × 10−12 mol cm2 s−1). The electrocatalytic efficiency, estimated as the ratio , was found to be 3.6 (at an applied potential of 0 mV vs. SCE; Γ = 5 × 10−8 mol cm−2) for a H2O2 concentration of 5 mm, thus indicating G/PB electrodes as possible H2O2 sensors.  相似文献   

18.
Catalase (Ct) was modified using Woodward’s reagent K (WRK) as a specific modifier of carboxyl residues. The modified Ct was immobilized on an oxidatively activated glassy carbon electrode surface to investigate its direct electrochemistry. Using cyclic voltammetry an irreversible reduction peak was obtained at approximately −0.362 V vs. Ag/AgCl in buffer solution, pH 7, and at a scan rate of 0.1 V s−1. The electrochemical parameters, including charge-transfer coefficient (0.27), apparent heterogeneous electron transfer rate constant (13.51 ± 0.42 s−1) and formal potential of the Ct film (−0.275 V) were determined. The prepared enzyme electrode exhibited a response to H2O2.  相似文献   

19.
In this work an equation of state applicable to the system containing electrolytes has been developed by coupling the perturbed chain statistical associating fluid theory (PC-SAFT) with the primitive mean spherical approximation. The resulting electrolyte equation of state is characterized by 4 ion parameters for each of the cation and anion contained in aqueous solutions, and 4 ion specific parameters for each of six cations (Li+, Na+, K+, Rb+, Mg2+ and Ca2+) and six anions (Cl, Br, I, HCO3, NO3 and SO42−) were estimated, based upon the individual ion approach, from the fitting of experimental densities and mean ionic activity coefficients of 26 aqueous single-salt solutions at 298.15 K and 1 bar. The present equation of state with the estimated individual ion parameters has been found to satisfactorily describe not only the densities and mean ionic activity coefficients, but also osmotic coefficients and water activities of single-salt aqueous solutions. Furthermore, the present model was extended to two-salt aqueous solutions, and it has been found that thermodynamic properties such as mentioned above, of two-salt solutions, can be well predicted with the present model, without any additional adjustable parameters.  相似文献   

20.
Lewatit FO36 resin was covered with Fe (III) nano-particles, and it was used as a new way to eliminate phosphate. Column experiments were carried out in 11 stages in fixed bed columns with constant flow rate of 9 ml/min and the empty bed contact time (EBCT) of 2.1 min. The adsorption capacity was calculated for different concentration of phosphate solutions. After resin was regenerated by using NaOH and NaCl solutions, the adsorption capacity of resin was computed for 6mg/L of phosphate, typically. The adsorption capacity of resin was checked again a typical concentration of phosphate. The adsorption capacity measurements of regenerated resin show that the concentration of phosphate reached to 1.6mg/g after an 8.5% decrease when the initial concentration of phosphate is 6 mg/L. Competition of anions with phosphate was analyzed using chloride, sulfate, bicarbonate and a combination of these anions. Finally the effect of resin in phosphate removal was studied for a typical real sample, and the data was analyzed using statistical software (SPSS 13). The statistical results indicated that Cl, SO43−, HCO3 and combined competing anions did not have a strong influence on the phosphate removal efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号