首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blade tip leakage flow with efficiency losses and cavitation phenomena is a concern for the low-head tidal power units. A simplified case of NACA0009 hydrofoil in a water tunnel is used to investigate the effects of tip clearance geometries including the foil tip shape and gap width on the flow features and foil performance. Steady non-cavitating simulations are implemented for a round tip foil and a sharp tip foil with two incidence angles (α = 10° and 5°) and different normalized gap width (τ). The minimum pressure is used to reflect the normalized vortex intensity (Γ*) and cavitation characteristics. The Γ*-τ curves at different streamwise positions show that the sharp tip foil generates relatively weaker tip leakage vortex with more flat curves, but its higher Γ* of tip separation vortex in wider gaps increases the risk of clearance cavitation. The flow features on a cross section inside the gap suggest that the sharp tip reduces the leakage flow losses and increases the velocity gradient due to the boundary layer separation. The lift coefficient is a little higher for the sharp tip foil than the round tip foil, with small differences for α = 5° but noticeable deviations for α = 10° especially within 0.3<τ < 1.  相似文献   

2.
This paper depicts numerical analysis on Impulse turbine with fixed guide vanes for wave energy conversion. From the previous investigations, it is found that one of the reasons for the mismatch between computed and experimental data is due to neglecting tip clearance ef fect. Hence, a 3-D model with tip clearance has been generated to predict the internal flow and performance of the turbine. As a result, it is found that the comparison between computed and experimental data is good, quantitatively and qualitatively. Computation has been carried out for various tip clearances to understand the physics of tip leakage flow and effect of tip clearance on performance of such unconventional turbine. It is predicted that the turbine with 0.25% tip clearance performs almost similar to the case of without tip clearance for the entire flow coefficients. The designed value of 1% tip clearance has been validated numerically and computed that the efficiency of the turbine has been reduced around 4%, due to tip clearance flow at higher flow coefficients.  相似文献   

3.
In this paper, the effect of tip clearance on the cooling performance of the microchannel heat sink is presented under the fixed pumping power condition. The thermal resistance of a microchannel heat sink is defined for evaluating its cooling performance. The effect of tip clearance is numerically investigated by increasing tip clearance from zero under the fixed pumping power condition. From the numerical results, the optimized tip clearance is determined, for which the thermal resistance has a minimum value. Finally, we show that the presence of tip clearance can improve the cooling performance of a microchannel heat sink when tip clearance is smaller than a channel width.  相似文献   

4.
A numerical study of unsteady laminar mixed convection flow in a square cavity with ventilation ports due to an oscillating velocity at the inlet port is performed. It is found that after certain time duration, a periodic variation in the fluid flow and temperature field in the cavity are created. It is observed that the heat transfer is enhanced for all the Strouhal numbers investigated in comparison to its steady state case. To realize the optimizing Strouhal number to reach the best performance of the system, the total Nusselt number and the coefficient of pressure drop in a cycle of the oscillation is evaluated with respect to the Strouhal number. It is found that for a region of the Strouhal number between 0.5 and 1, the performance of the system will be desirable with considering both the maximum heat transfer rate and minimum pressure drop in the cavity.  相似文献   

5.
A three-dimensional “full-cell” computational fluid dynamics (CFD) model is proposed in this paper to investigate the effects of different flow channel designs on the performance of proton exchange membrane fuel cells (PEMFC). The flow channel designs selected in this work include the parallel and serpentine flow channels, single-path and multi-path flow channels, and uniform depth and step-wise depth flow channels. This model is validated by the experiments conducted in the fuel cell center of Yuan Ze University, showing that the present model can investigate the characteristics of flow channel for the PEMFC and assist in the optima designs of flow channels. The effects of different flow channel designs on the PEMFC performance obtained by the model predictions agree well with those obtained by experiments. Based on the simulation results, which are also confirmed by the experimental data, the parallel flow channel with the step-wise depth design significantly promotes the PEMFC performance. However, the performance of PEMFC with the serpentine flow channel is insensitive to these different depth designs. In addition, the distribution characteristics of fuel gases and current density for the PEMFC with different flow channels can be also reasonably captured by the present model.  相似文献   

6.
Unsteadiness of tip clearance flow with three different tip clearance sizes is numerically investigated in this paper. NASA Rotor 67 is chosen as the computational model. It is found that among all the simulated cases, the un- steadiness exists when the size of the tip clearance is equal to or larger than design tip clearance size. The relative total pressure coefficient contours indicate that region of influence by tip leakage flow augments with the increase of tip clearance size at a fixed mass flow rate. Root Mean Square contours of static pressure distribution in the rotor tip region are provided to illustrate that for design tip clearance (1.1% tip chord) the strongest fluctuating region is located on pressure side of blade near leading edge, while for the larger tip clearance (2.2% tip chord), it is in the region of the interaction between the shock wave and the tip leakage flow.  相似文献   

7.
The steady and unsteady leakage flow and heat transfer characteristics of the rotor blade squealer tip were conducted by solving Reynolds-Averaged Navier-Stokes(RANS) equations with k-ω turbulence model.The first stage of GE-E3 engine with squealer tip in the rotor was adopted to perform this work.The tip clearance was set to be 1% of the rotor blade height and the groove depth was specified as 2% of the span.The results showed that there were two vortexes in the tip gap which determined the local heat transfer characteristics.In the steady flow field,the high heat transfer coefficient existed at several positions.In the unsteady case,the flow field in the squealer tip was mainly influenced by the upstream wake and the interaction of the blades potential fields.These unsteady effects induced the periodic variation of the leakage flow and the vortexes,which resulted in the fluctuation of the heat transfer coefficient.The largest fluctuation of the heat transfer coefficient on the surface of the groove bottom exceeded 16% of the averaged value on the surface of the squealer tip.  相似文献   

8.
For flows presenting linear instabilities, the laminar regime can be delimited accurately by the onset of the first bifurcation. For an unheated sphere, the primary bifurcation is preceded by a detachment of the boundary layer and a build up of a recirculation zone. In the mixed convection, the convection tends to prevent the boundary layer of the assisting flow from detaching and from a build up a recirculation zone. In this paper, the issue of the correlation between the boundary layer detachment and the loss of axisymmetry in the assisting flow is investigated with a special focus to the Prandtl number corresponding to flows in air (Pr = 0.72). For Richardson numbers up to 0.7, the detachment of the boundary layer (not necessarily a build up of the recirculation zone) is shown to be a precursor sign of a regular primary bifurcation similarly as for the wake of an unheated sphere. At this bifurcation, the flow stays steady but looses its axisymmetry. To assess the Prandtl number effects, the separation of the axisymmetric flow is investigated also in the Pr = 7 parameter plane and for Pr varying between 0.1 and 100 at fixed Reynolds and Richardson number values. The interest of the obtained results is twofold. Firstly, in the investigated parameter sub-domain, clear limits of the physical relevance of axisymmetric computations have been found. Within these limits, accurate values of the drag coefficients and overall Nusselt numbers are given. Secondly, in axisymmetric simulations, the detachment of the boundary layer may be a useful indication of the possible loss of axisymmetry.  相似文献   

9.
A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a better mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.  相似文献   

10.
The existing flow channels like parallel and gird channels have been modified for better fuel distribution in order to boost the performance of direct methanol fuel cell. The main objective of the work is to achieve minimized pressure drop in the flow channel, uniform distribution of methanol, reduced water accumulation, and better oxygen supply. A 3D mathematical model with serpentine channel is simulated for the cell temperature of 80 °C, 0.5 M methanol concentration. The study resulted in 40 mW/cm2 of power density and 190 mA/cm2 of current density at the operating voltage of 0.25 V. Further, the numerical study is carried out for modified flow channels to discuss their merits and demerits on anode and cathode side. The anode serpentine channel is unmatched by the modified zigzag and pin channels by ensuring the better methanol distribution under the ribs and increased the fuel consumption. But the cathode serpentine channel is lacking in water management. The modified channels at anode offered reduced pressure drop, still uniform reactant distribution is found impossible. The modified channels at cathode outperform the serpentine channel by reducing the effect of water accumulation, and uniform oxygen supply. So the serpentine channel is retained for methanol supply, and modified channel is chosen for cathode reactant supply. In comparison to cell with only serpentine channel, the serpentine anode channel combined with cathode zigzag and pin channel enhanced power density by 17.8% and 10.2% respectively. The results revealed that the zigzag and pin channel are very effective in mitigating water accumulation and ensuring better oxygen supply at the cathode.  相似文献   

11.
The flow at the exit from the runner blade of a centrifugal fan with forward curved blades (a sirocco fan) sometimes separates and becomes unstable. We have conducted many researches on the impeller shape of a sirocco fan, proper inlet and exit blade angles were considered to obtain optimum performance. In this paper, the casing shape were decided by changing the circumferential angle, magnifying angle and the width, 21 sorts of casings were used. Performance tests, inner flow velocity and pressure distributions were measured as well. Computational fluid dynamic calculations were also made and compared with the experimental results. Finally, the most suitable casing shape for best performance is considered.  相似文献   

12.
The objective of this paper is to present the performance comparison of 2D Computational Fluid Dynamics (CFD) analysis with experimental analysis of 0.6 m impulse turbine with fixed guide vanes for both 0.6 and 0.7 hub to tip ratio (H/T). Also the comparison of 2D CFD analysis of the said turbine with different values of H/T ranging from 0.5 to 0.7. A 2D-cascade model was used for CFD analysis while uni-directional steady flow was used for experimental analysis. The blade and guide vane geometries are based on 0.6 m rotor diameter, with optimum profile, and different H/T of 0.5, 0.6 and 0.7. It was concluded from 2D CFD analysis that 0.5 H/T ratio performances was higher than that of 0.6 and 0.7 H/T at peak efficiency and the operational flow range for 0.5 H/T was found to be wider than that of 0.6 and 0.7 H/T ratio.  相似文献   

13.
Three-dimensional numerical investigation of PEMFC with landing to channel ratio (L:C) of 2:2 for 25-cm2 serpentine-parallel channel has been simulated, and the obtained results have been validated with the polarization curve obtained through experiments. It is found that the maximum error in the polarization curve is less than 4%, and thus a very good deal exists between the simulation study and experimentation. Upon validation, the study has been extended for various flow path designs with different L:C ratio numerically. The prediction reveals that the L:C ratio of 2:2 exhibits the better performance for all the flow channels considered, and it is found that the straight-zigzag flow field with L:C ratio of 2:2 attributes the maximum power density of 0.3250 W/cm2 for an optimum open circuit voltage of 0.4 Volts with minimal pressure drop. Oxygen consumption in the cathode flow channels of serpentine-parallel, serpentine-zigzag, and straight-parallel are 77.08%, 10.41%, and 42.70% lesser than that of straight-zigzag PEMFC, respectively. The pressure drop in the flow channel of serpentine-parallel, serpentine-zigzag, and straight-parallel with landing to channel ratio 2:2 are 78.18%, 95.81%, and 48.33% higher than that of straight-zigzag flow field, respectively. The polarization curve, hydrogen (H2), oxygen (O2), water content along the flow channel and the proton conductivity, H2O content across the membrane electrolyte, and current density contour at the GDL/catalyst interface of the anode side for all flow channel configurations have been presented and discussed.  相似文献   

14.
Mixed convection heat transfer in a lid-driven cavity along with a heated circular hollow cylinder positioned at the center of the cavity has been analyzed numerically. The present study simulates a realistic system such as air-cooled electronic equipment with a heat component or an oven with heater. A Galerkin weighted residual finite element method with a Newton–Raphson iterative algorithm is adopted to solve the governing equations. The computation is carried out for wide ranges of the Richardson numbers, cylinder diameter and solid fluid thermal conductivity ratio. Results are presented in the form of streamlines, isothermal lines, average Nusselt number at the heated surface and fluid temperature in the cavity for the mentioned parameters. It is found that the flow field and temperature distribution strongly depend on the cylinder diameter and also the solid–fluid thermal conductivity ratio at the three convective regimes.  相似文献   

15.
针对以槽式太阳能集热器为背景的高密度、高度非均匀热流下水平管内的混合对流换热问题,采用大涡模拟方法,研究了热流密度非均匀性对水平管内混合对流瞬态涡结构、脉动强度、湍流热通量及局部平均壁温的影响;揭示了非均匀热流下自然对流对管内湍流特性的影响规律;提出了适用于不同热边界条件下管内混合对流换热的强化措施。结果表明:均匀热流时,自然对流会抑制管顶部的湍流脉动,使流动层流化,造成传热能力局部恶化;非均匀热流时,随着自然对流的增强,近壁面速度脉动强度先减小后增大,二次流逐渐增强,换热能力逐渐提高,故管内换热能力受湍流脉动与二次流协同影响;在自然对流影响下,均匀加热时管顶部可采用针对层流的强化换热措施,非均匀加热时需着重提高管底部高热流区域的湍流脉动与涡强度。  相似文献   

16.
The present work is aimed to study mixed convection heat transfer characteristics within a ventilated square cavity having a heated hollow cylinder. The heated hollow cylinder is placed at the center of the cavity. In addition, the wall of the cavity is assumed to be adiabatic. Flows are imposed through the inlet at the bottom of the left wall and exited at the top of the right wall of the cavity. The present study simulates a practical system such as air-cooled electronic equipment with a heat component or an oven with heater. Emphasis is sited on the influences of the cylinder diameter and the thermal conductivity of the cylinder in the cavity. The consequent mathematical model is governed by the coupled equations of mass, momentum and energy and solved by employing Galerkin weighted residual method of finite element formulation. A wide range of pertinent parameters such as Reynolds number, Richardson number, cylinder diameter and the solid-fluid thermal conductivity ratio are considered in the present study. Various results such as the streamlines, isotherms, heat transfer rates in terms of the average Nusselt number and average fluid temperature in the cavity are presented for different aforesaid parameters. It is observed that the cylinder diameter has significant effect on both the flow and thermal fields but the solid-fluid thermal conductivity ratio has significant effect only on the thermal field.  相似文献   

17.
A 3D numerical model of proton exchange membrane fuel cell (PEMFC) with the installation of baffle plates is developed. The majority of the conservation equations and physical parameters are implemented through the user defined functions (UDFs) in the FLUENT software. The characteristics of mass transport and performance of PEMFC are investigated. The results reveal that the baffle plate can enhance the mass transport efficiency and the performance of PEMFC. The baffle plate installed in the PEMFC flow channel increases the local gas velocity, which can promote the reactant gas transport and the liquid water removal in the porous electrode. As a result, the reactant gas concentration is larger in the porous electrode, which enhances the fuel cell performance for decreasing the over-potential of concentration. The fuel cell output power increases with the blockage ratio of the baffle plate. Considering the extra pumping power resulted from pressure loss caused by the baffle plate, the fuel cell with the blockage ratio of 0.8 is found to perform best in terms of the fuel cell net power generation. The fuel cell performance increases first with the baffle plate number, due to the better reactant distribution and water management, but decreases when the baffle plate number is too large, due to the excessive blockage for the reactant gas transport to the channel downstream. The PEMFC investigated with 5 baffle plates in the channel is found to be optimal. A channel design to achieve gradually increasing blockage ratios is also proposed, which exhibits better cell performance than the design with even blockage ratios.  相似文献   

18.
介绍了采用计算流体力学方法对湿法脱硫喷淋塔内流场模拟的理论研究情况,对研究结果进行了分析,并对以后的研究工作进行了展望.  相似文献   

19.
In this paper, mixed convection flow and temperature fields in a vented square cavity subjected to an external copper–water nanofluid are studied numerically. The natural convection effect is attained by heating from the constant flux heat source on the bottom wall and cooling from the injected flow. In order to investigate the effect of inlet and outlet location, four different placement configurations of the inlet and outlet ports are considered. In each of them, both the inlet and outlet ports are alternatively located either on the top or the bottom of the sides and external flow enters in to the cavity through an inlet opening in the left vertical wall and exits from another opening in the opposite wall. The remaining boundaries are considered adiabatic. The governing equations have been solved using the finite volume approach, using SIMPLE algorithm on the collocated arrangement. The study has been carried out for the Reynolds number in the range of 50 ≤ Re ≤ 1000, with Richardson numbers 0 ≤ Ri ≤ 10 and for solid volume fraction 0 ≤ ? ≤ 0.05. Results are presented in the form of streamlines, isotherms, average Nusselt number. In addition, the effects of solid volume fraction of nanofluids on the hydrodynamic and thermal characteristics have been investigated and discussed. The algorithm and the computer code have been also compared with numerical results in order to verify and validate the model.  相似文献   

20.
This study aims at investigating the effect of a multistrut-based hydrogen injector in a scramjet combustor underreacting case. The numerical analysis is carried out using two-dimensional Reynolds-averaged Navier–Stokes equations with the Shear Stress Transport k ω turbulence model in contention to comprehend the flow physics during scramjet combustion. The three major parameters, such as the shock wave pattern, wall pressures, and static temperature across the combustor, are validated with the reported experimental results. The results comply with the range, indicating that the adopted simulation method for single strut injection can be extended for other investigations. It is noticed that with multistrut injectors, as hydrogen jet pressure increases in the supersonic flow field, the jet penetration rate in the lateral direction of the flow and the total pressure loss as compared with the baseline injection pressure conditions has increased. The supersonic flow characteristics are determined based on the flow properties, combustion efficiency, mixing efficiency, and total pressure loss. Compared with the single-strut output of a scramjet combustor, multistruts inclusion increased the combustion efficiency by almost 18%, the mixing efficiency attained the maximum with 16% fewer lengths. The total pressure loss in single-strut is 14% lower than that of multistrut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号