首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remote state preparation is the variant of quantum state teleportation in which the sender knows the quantum state to be communicated. The original paper introducing teleportation established minimal requirements for classical communication and entanglement but the corresponding limits for remote state preparation have remained unknown until now: previous work has shown, however, that it not only requires less classical communication but also gives rise to a tradeoff between these two resources in the appropriate setting. We discuss this problem from first principles, including the various choices one may follow in the definitions of the actual resources. Our main result is a general method of remote state preparation for arbitrary states of many qubits, at a cost of 1 bit of classical communication and 1 bit of entanglement per qubit sent. In this "universal" formulation, these ebit and cbit requirements are shown to be simultaneously optimal by exhibiting a dichotomy. Our protocol then yields the exact tradeoff curve for memoryless sources of pure states (including the case of incomplete knowledge of the ensemble probabilities), based on the recently established quantum-classical tradeoff for visible quantum data compression. A variation of that method allows us to solve the even more general problem of preparing entangled states between sender and receiver (i.e., purifications of mixed state ensembles). The paper includes an extensive discussion of our results, including the impact of the choice of model on the resources, the topic of obliviousness, and an application to private quantum channels and quantum data hiding.  相似文献   

2.
We consider visible compression for discrete memoryless sources of mixed quantum states when only classical information can be sent from Alice to Bob. We assume that Bob knows the source statistics, and that Alice and Bob have access to the same source of random numbers. We put in an information-theoretic framework some previous results on visible compression for sources of states with commuting density operators, and remove the commutativity requirement. We derive a general achievable compression rate, which is for the noncommutative case still higher than the known lower bound. We also present several related problems of classical information theory, and show how they can be used to answer some questions of the mixed-state compression problem.  相似文献   

3.
Distilling common randomness from bipartite quantum states   总被引:1,自引:0,他引:1  
The problem of converting noisy quantum correlations between two parties into noiseless classical ones using a limited amount of one-way classical communication is addressed. A single-letter formula for the optimal tradeoff between the extracted common randomness and classical communication rate is obtained for the special case of classical-quantum correlations. The resulting curve is intimately related to the quantum compression with classical side information tradeoff curve Q/sup */(R) of Hayden, Jozsa, and Winter. For a general initial state, we obtain a similar result, with a single-letter formula, when we impose a tensor product restriction on the measurements performed by the sender; without this restriction, the tradeoff is given by the regularization of this function. Of particular interest is a quantity we call "distillable common randomness" of a state: the maximum overhead of the common randomness over the one-way classical communication if the latter is unbounded. It is an operational measure of (total) correlation in a quantum state. For classical-quantum correlations it is given by the Holevo mutual information of its associated ensemble; for pure states it is the entropy of entanglement. In general, it is given by an optimization problem over measurements and regularization; for the case of separable states we show that this can be single-letterized.  相似文献   

4.
量子博弈是量子信息的一个重要分支。基于单硬币量子博弈理论,主要讨论了N=-13的一色纸牌量子博弈,并将其推广到了任意 态的情形。在经典博弈中,两人对一色13张纸牌轮流洗牌,所得最后一张牌的结果任何一个人都没法控制。而在量子博弈中,若游戏者之一Bob采用量子策略来进行洗牌,而另一个游戏参与者仍采用经典的洗牌方式,则Bob总可以使最后一张牌是他所想要得到的那张。进而可以说明:对于一色纸牌博弈模型,量子策略比经典策略更具优越性。  相似文献   

5.
The statistical state of any (classical or quantum) system with nontrivial time evolution can be interpreted as the pointer of a clock. The quality of such a clock is given by the statistical distinguishability of its states at different times. If a clock is used as a resource for producing another one the latter can at most have the quality of the resource. We show that this principle, formalized by a quasi-order, implies constraints on many physical processes. Similarly, the degree to which two (quantum or classical) clocks are synchronized can be formalized by a quasi-order of synchronism. Copying timing information is restricted by quantum no-cloning and no-broadcasting theorems since classical clocks can only exist in the limit of infinite energy. We show this quantitatively by comparing the Fisher timing information of two output systems to the input's timing information. For classical signal processing in the quantum regime our results imply that a signal looses its localization in time if it is amplified and distributed to many devices.  相似文献   

6.
针对经典保密通信中信息安全传输的问题,提出了一种基于循环码和信息压缩的量子保密通信算法。首先,发送端对传输的信息进行预处理,将其分割为长度不等的2组数据,分别用于循环编码和压缩编码。然后,发送端添加一串量子态传输至接收端,采用误码数作为信道安全检测的依据,若信道安全,则对预处理后的数据量子态处理,利用量子稳定子码编码分段并传输,依据稳定字码的特性克服环境引起的误码。最后,接收端接收到量子信息后进行解码,并解循环和解压缩从而获得数据。安全性分析表明,所提量子保密通信算法能较好地抵抗篡改和截断信息的攻击。仿真结果表明,对于数据压缩部分按5分段能获得较好的效果。  相似文献   

7.
In this paper, we consider the problem of lossy coding of correlated vector sources with uncoded side information available at the decoder. In particular, we consider lossy coding of vector source xisinRN which is correlated with vector source yisinRN, known at the decoder. We propose two compression schemes, namely, distributed adaptive compression (DAC) and distributed universal compression (DUC) schemes. The DAC algorithm is inspired by the optimal solution for Gaussian sources and requires computation of the conditional Karhunen-Loegraveve transform (CKLT) of the data at the encoder. The DUC algorithm, however, does not require knowledge of the CKLT at the encoder. The DUC algorithms are based on the approximation of the correlation model between the sources y and x through a linear model y=Hx+n in which H is a matrix and n is a random vector and independent of x. This model can be viewed as a fictitious communication channel with input x and output y. Utilizing channel equalization at the receiver, we convert the original vector source coding problem into a set of manageable scalar source coding problems. Furthermore, inspired by bit loading strategies employed in wireless communication systems, we propose for both compression schemes a rate allocation policy which minimizes the decoding error rate under a total rate constraint. Equalization and bit loading are paired with a quantization scheme for each vector source entry (a slightly simplified version of the so called DISCUS scheme). The merits of our work are as follows: 1) it provides a simple, yet optimized, implementation of Wyner-Ziv quantizers for correlated vector sources, by using the insight gained in the design of communication systems; 2) it provides encoding schemes that, with or without the knowledge of the correlation model at the encoder, enjoy distributed compression gains  相似文献   

8.
A rigorous basis for the quantum analysis of the steady state of linear distributed systems is established. The analysis of a distributed system of finite length requires, for self-consistency, that excitations be stated at the boundaries of the system even in the absence of externally applied excitations. The commutators of the amplitudes at the boundaries are stated and a useful analogy with thermal noise of classical systems is established. The use of these boundary conditions enables one to formulate the theory of the steady state for distributed quantum systems. When the system under consideration is coupled to a dissipation mechanism, operator-noise sources have to be assigned to the dissipative elements. The commutation relations that must be obeyed by these noise sources are derived. This formalism enables one to analyze the steady-state operation of an attenuator and of a maser amplifier. Finally, properties of multiterminal-pair networks are discussed using the steady-state quantum approach.  相似文献   

9.
In classical test and verification one develops a test set separating a correct circuit from a circuit containing any considered fault. Classical faults are modelled at the logical level by fault models that act on classical states. The stuck fault model, thought of as a lead connected to a power rail or to a ground, is most typically considered. A classical test set complete for the stuck fault model propagates both binary basis states, 0 and 1, through all nodes in a network and is known to detect many physical faults. A classical test set complete for the stuck fault model allows all circuit nodes to be completely tested and verifies the function of many gates. It is natural to ask if one may adapt any of the known classical methods to test quantum circuits. Of course, classical fault models do not capture all the logical failures found in quantum circuits. The first obstacle faced when using methods from classical test is developing a set of realistic quantum-logical fault models (a question which we address, but will likely remain largely open until the advent of the first quantum computer). Developing fault models to abstract the test problem away from the device level motivated our study. Several results are established. First, we describe typical modes of failure present in the physical design of quantum circuits. From this we develop fault models for quantum binary quantum circuits that enable testing at the logical level. The application of these fault models is shown by adapting the classical test set generation technique known as constructing a fault table to generate quantum test sets. A test set developed using this method will detect each of the considered faults.  相似文献   

10.
After K. Bostro/spl uml/m and T. Felbinger observed that lossless quantum data compression does not exist unless decoders know the lengths of codewords, they introduced a classical noiseless channel to inform the decoder of a quantum source about the lengths of codewords. In this paper we analyze their codes and present: 1) a sufficient and necessary condition for the existence of such codes for given lists of lengths of codes; 2) a characterization of the optimal compression rate for their codes. However our main contribution is a more efficient way to use the classical channel. We propose a more general coding scheme. It turned out that the optimal compression can always be achieved by a code obtained by this scheme. A von Neumann entropy lower bound to rates of our codes and a necessary and sufficient condition to achieve the bound are obtained. The gap between this lower bound and the compression rates is also well analyzed. For a special family of quantum sources we provide a sharper lower bound in terms of Shannon entropy. Finally, we propose some problems for further research.  相似文献   

11.
量子骰子   总被引:1,自引:1,他引:0  
量子博弈是量子信息的一个重要分支.以Meyer所研究的单硬币博弈游戏为基础,主要讨论了具有六个态的骰子游戏.对于经典的二人骰子游戏而言,游戏者双方P和Q获胜的几率相同,都是1/2.而在量子骰子游戏中,用骰子的态密度矩阵来表示该态,若其中一个游戏者Q用量子策略来代替经典游戏中随机的翻转过程,而另一个游戏者P仍然采用经典策略,则Q完全可以控制游戏的胜负.从而对于量子骰子游戏而言,可以得出:量子策略比经典策略更具优越性.  相似文献   

12.
A rate distortion problem is solved that is motivated by a quantum data compression problem. The goal is to send information about a source string x so that a receiver can construct a second string y for which the joint empirical probability distribution of x and y is close to some desired distribution. The problem differs from the usual rate distortion problems in that one must consider both remote sources and distortion functions that are not averages of per-letter distortion functions  相似文献   

13.
This paper deals with the problem of source separation in the case when the observations result from a multiple-input multiple-output convolutive mixing system. In a blind framework, higher order contrast functions have been proved to be efficient for extracting sources. Inspired by a semiblind approach, we propose new contrast functions for blind signal separation that make use of reference signals. The main advantage of this approach consists in the quadratic form of these criteria: the extraction of one source hence reduces to a simple optimization task for which fast and efficient algorithms are available. The separation of the other sources from the mixture is then carried out by an iterative deflation method. Furthermore, these contrasts are shown to be valid for both independent identically distributed (i.i.d.) and non-i.i.d. source signals. The performance offered by these criteria is investigated through simulations: they appear as very appealing tools compared with some classical contrast functions  相似文献   

14.
雷红轩  彭家寅  刘熠 《电子学报》2016,44(12):2932-2938
程序验证是保证程序正确性的关键技术.由于经典世界和量子世界的本质不同,经典程序验证的技术和工具不能直接应用到量子系统.而量子程序设计语言是描述量子系统的一种新的形式化模型,量子程序的验证问题就显得更为迫切和必要.本文首先讨论了量子通讯中常用的比特翻转、相位翻转、去极化、幅值阻尼、相位阻尼等信道作为特殊的非确定型量子程序从计算基态开始运行时的可达集合和终止集合等程序验证问题.其次,把上述五种量子程序两两组合组成非确定型量子程序,根据这五种量子程序的可达集合之相似点,最终合并成三种非确定型量子程序,重点讨论了这三种非确定型量子程序从计算基态开始运行时的终止和发散等程序验证问题.研究表明:这三种非确定型量子程序从计算基态0开始运行时都是终止的;而从计算基态1开始运行时:比特翻转信道和去极化信道组成的非确定型量子程序的终止和发散与分别刻画它们的两个参数有关;比特翻转信道和相位翻转信道组成的非确定型量子程序的终止和发散只与刻画比特翻转信道的参数有关;幅值阻尼信道和相位阻尼信道组成的非确定型量子程序是发散的,其发散条件与刻画量子信道的两个参数都没有关系.本文的结果可以为量子信息安全中量子通讯协议的验证提供理论和技术支持.  相似文献   

15.
Suppose two distant observers, Alice and Bob, share some form of entanglement - quantum correlations - in some bipartite pure quantum states. They may apply local operations and classical communication to convert one form of entanglement to another. Since entanglement is regarded as a resource in quantum information processing, it is an important question to ask how much classical communication, which is also a resource, is needed in the inter-conversion process of entanglement. In this paper, we address this important question in the many-copy case. The inter-conversion process of entanglement is usually divided into two types: concentrating the entanglement from many partially entangled states into a smaller number of maximally entangled states (i.e., singlets) and the reverse process of diluting singlets into partially entangled states. It is known that entanglement concentration requires no classical communication, but the best prior art result for diluting to N copies of a partially entangled state requires an amount of communication on the order of /spl radic/N. Our main result is to prove that this prior art result is optimal up to a constant factor; any procedure for approximately creating N partially entangled states from singlets requires /spl Omega/(/spl radic/N) bits of classical communication. Previously not even a constant bound was known for approximate entanglement transformations. We also prove a lower bound on the inefficiency of the process: to dilute singlets to N copies of a partially entangled state, the entropy of entanglement must decrease by /spl Omega/(/spl radic/N). Moreover, we introduce two new tools - /spl delta/-significant subspaces and the standard form protocol reduction in entanglement manipulations. We hope that these two new tools will be useful in other work in quantum information theory.  相似文献   

16.
We address the question whether quantum memory is more powerful than classical memory. In particular, we consider a setting where information about a random n-bit string X is stored in s classical or quantum bits, for s相似文献   

17.
经典-量子共信道同传是量子保密通信关键应用技术之一,其能够解决当前量子信息与经典信息需不同光纤分别传输的难点问题,可显著降低应用成本。本文针对基于波分复用技术的连续变量量子密钥与经典信息同传的方案,定量分析了系统拉曼散射噪声特性,在前向和后向两种不同经典信息传输模式下,仿真对比研究了拉曼散射噪声对系统安全密钥率的影响。结果表明:经典信息采用前向传输模式时系统安全密钥率明显大于后向传输模式;在固定信道输入功率时,短距离通信时拉曼散射噪声对安全密钥率的影响较小,随距离的增长,拉曼噪声影响不可忽略;在固定通信距离时,在一定数值范围内的额外噪声对系统的安全密钥率影响较小,在L=50km时,此数值为0.07N0 。  相似文献   

18.
This article describes a very different approach to the decentralized compression of networked data. Considering a particularly salient aspect of this struggle that revolves around large-scale distributed sources of data and their storage, transmission, and retrieval. The task of transmitting information from one point to another is a common and well-understood exercise. But the problem of efficiently transmitting or sharing information from and among a vast number of distributed nodes remains a great challenge, primarily because we do not yet have well developed theories and tools for distributed signal processing, communications, and information theory in large-scale networked systems.  相似文献   

19.
In this paper, we propose a technique for coding the data from multiple correlated binary sources, with the aim of providing an alternative solution to the correlated source compression problem. Using non-systematic repeat-accumulate based codes, it is possible to achieve compression which is close to the Slepian–Wolf bound without relying on massive puncturing. With the technique proposed in this paper, instead of puncturing, compression is achieved by increasing check node degrees. Hence, the code rate can be more flexibly adjusted with the proposed technique in comparison with the puncturing-based schemes. Furthermore, the technique is applied to distributed joint source-channel coding (DJSCC). It is shown that in many cases tested, the proposed scheme can achieve mutual information very close to one with the lower signal-to-noise power ratio than turbo and low density generator matrix based DJSCC in additive white Gaussian noise channel. The convergence property of the system is also evaluated via the extrinsic information transfer analysis.  相似文献   

20.
Various compression methods have been proposed for tackling the problem of increasing test-data volume of contemporary, core-based systems. Despite their effectiveness, most of the approaches that are based on classical codes (e.g., run-lengths, Huffman) cannot exploit the test-application-time advantage of multiple-scan-chain cores, since they are not able to perform parallel decompression of the encoded data. In this paper, we take advantage of the inherent parallelism of Huffman decoding and we present a generalized multilevel Huffman-based compression approach that is suitable for cores with multiple scan chains. The size of the encoded data blocks is independent of the slice size (i.e., the number of scan chains), and thus it can be adjusted so as to maximize the compression ratio. At the same time, the parallel data-block decoding ensures the exploitation of most of the scan chains' parallelism. The proposed decompression architecture can be easily modified to suit any Huffman-based compression scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号