首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
High-force eccentric exercise induces neuromuscular dysfunction and may augment the cardiovascular response to exercise. This investigation sought to determine whether changes in strength and sense of force following high-force eccentric exercise alter heart rate and blood pressure responses during isometric contractions. Subjects (4F,6M) performed 50 maximum resistance eccentric actions with one arm (ECC arm). Contractions at 10% of the ECC arm maximum were held for 7 min on two pre-exercise days. The force output perceived to be the same as 10% of the pre-exercise maximum was determined using a force matching task. This force, 35.6, 27.2, and 21.1% lower on days 1, 3, and 5 post-exercise, was held during isometric contractions on these days, respectively. Despite a lowering of absolute contraction force, heart rate (P < 0.05) and blood pressure (P < 0.001) responses during contractions using the ECC arm were consistently elevated relative to the control arm. However, subjects perceived that they were exerting forces similar to those achieved before eccentric exercise-induced neuromuscular dysfunction. These findings suggest that perceived effort following strength loss induced by mechanically stressful exercise dictates the cardiovascular responses during isometric contractions.  相似文献   

2.
The purpose of this study was to contrast the discharge patterns of the same motor units during movements and during isometric contractions that were produced with comparable torque-time characteristics. Subjects performed elbow flexion and extension movements with predetermined acceleration characteristics. The average acceleration and deceleration profiles for the movements were reproduced in the isometric setting by presenting the kinematic profiles as templates for torque production. Trained subjects were able to match the first agonist (AG1) and antagonist (ANT) electromyographic (EMG) bursts, but tended to produce a smaller second agonist burst (AG2) in the isometric contraction. Twenty-five motor units from triceps brachii were studied. The same motor units (with one exception) were recruited and subsequently discharged in a similar fashion in both the isometric and movement tasks in the AG1 and ANT EMG bursts, with fewer motor unit discharges in the AG2 burst in the isometric contraction. The central control mechanisms appear to be the same for the acceleration phase of movement and isometric contraction, but differ during the deceleration phase.  相似文献   

3.
1. Previous studies have used tendon vibration to investigate kinesthetic illusions in the isometric limb and end point control in the moving limb. These previous studies have shown that vibration distorts the perceptions of static joint angle and movement and causes systematic errors in the end point of movement. In this paper we describe the effects of tendon vibration during movement while human subjects performed a proprioceptively coordinated motor task. In an earlier study we showed that the CNS coordinates this motor task-a movement sequence-with proprioceptive information related to the dynamic position and velocity of the limb. 2. When performing this movement sequence, each subject sat at a table and opened the right hand as the right elbow was passively rotated in the extension direction through a prescribed target angle. Vision of the arm was prevented, and the movement velocity was changed randomly from trial to trial, leaving proprioception as the only useful source of kinematic information with which to perform the task. 3. In randomly occurring trials, vibration was applied to the tendon of the biceps brachii, a muscle that lengthens during elbow extension. In some experiments the timing of tendon vibration was varied with respect to the onset of elbow rotation, and in other experiments the frequency of vibration was varied. In each experiment we compared the accuracy of the subject's response (i.e., the elbow angle at which the subject opened the hand) in trials with tendon vibration with the accuracy in trials without tendon vibration. 4. The effect of tendon vibration depended on the frequency of vibration. When the biceps tendon was vibrated at 20 Hz, subjects opened the hand after the elbow passed through the target angle ("overshooting"). Overshooting is consistent with an underestimate of the actual displacement or velocity of the elbow. Vibration at 30 Hz had little or no effect on the elbow angle at hand opening. Vibration at 40 Hz caused subjects to open the hand before the elbow reached the target angle ("undershooting"). Undershooting is consistent with an overestimate of the actual displacement or velocity of the elbow. The size of the error depended on the velocity of the passively imposed elbow rotation. 5. The effect of tendon vibration also depended on the timing of vibration. If 40-Hz vibration began at the onset of movement, the subject undershot the target. If 40-Hz vibration started 5 s before movement onset and continued throughout the movement, the undershoot error increased in magnitude. However, if 40-Hz vibration started 5 s before movement onset and then stopped at movement onset, the subject overshot the target. When vibration was shut off during movement, a transition occurred from an over-shooting error to an undershooting error at a time that depended on the velocity of elbow rotation. 6. In a separate experiment, subjects were instructed to match either the perceived dynamic position or the perceived velocity of rotation imposed on the right elbow by actively rotating the left elbow. In both matching tasks, tendon vibration produced oppositely directed errors depending on the frequency of vibration. Vibration at 20 Hz produced a perception of decreased elbow velocity and a bias in dynamic position in the flexion direction, and vibration at 40 Hz produced the opposite perceptions. 7. We conclude that muscle spindle afferents, which are activated by tendon vibration, are an important source of the dynamic position and velocity information that the CNS uses to coordinate this movement sequence task. The observed effects of vibration timing and frequency suggest that perceptual changes evoked by vibration cannot be explained by the simple summation of sensory input evoked by movement and by vibration. Rather, the bias in perception produced by vibration appears to be related to the difference between vibration- and movement-evoked activity in muscle spindle afferents.  相似文献   

4.
WD Bandy  WP Hanten 《Canadian Metallurgical Quarterly》1993,73(7):455-65; discussion 465-7
BACKGROUND AND PURPOSE: The purpose of this study was to examine the effect of isometric training of the quadriceps femoris muscles, at different joint angles, on torque production and electromyographic (EMG) activity. SUBJECTS: One hundred seven women were randomly assigned to one of four groups. Three groups trained with isometric contractions three times per week at a knee flexion angle of 30, 60, or 90 degrees. The fourth group, which served as a control, did not exercise. METHODS: Isometric torque was measured using a dynamometer, and EMG activity was measured using a multichannel EMG system. Measurements were obtained during maximal isometric contraction of the quadriceps femoris muscles at 15-degree increments from 15 to 105 degrees of knee flexion. Measurements were taken before and after 8 weeks of training. RESULTS: Following isometric exercise, increased torque and EMG activity occurred not only at the angle at which subjects exercised, but also at angles in the range of motion at which exercise did occur. Further analyses indicated that exercising in the lengthened position for the quadriceps femoris muscles (90 degrees of knee flexion) produced increased torque across all angles measured and appeared to be the more effective position for transferring strength and EMG activity to adjacent angles following isometric training as compared with the shorter positions of the muscle (30 degrees and 60 degrees of knee flexion). CONCLUSION AND DISCUSSION: These findings suggest that an efficient method for increasing isometric knee extension torque and EMG activity throughout the entire range of motion is to exercise with the quadriceps femoris muscles in the lengthened position.  相似文献   

5.
The extreme flexibility of the octopus arm allows it to perform many different movements, yet octopuses reach toward a target in a stereotyped manner using a basic invariant motor structure: a bend traveling from the base of the arm toward the tip (Gutfreund et al., 1996a). To study the neuronal control of these movements, arm muscle activation [electromyogram (EMG)] was measured together with the kinematics of reaching movements. The traveling bend is associated with a propagating wave of muscle activation, with maximal muscle activation slightly preceding the traveling bend. Tonic activation was occasionally maintained afterward. Correlation of the EMG signals with the kinematic variables (velocities and accelerations) reveals that a significant part of the kinematic variability can be explained by the level of muscle activation. Furthermore, the EMG level measured during the initial stages of movement predicts the peak velocity attained toward the end of the reaching movement. These results suggest that feed-forward motor commands play an important role in the control of movement velocity and that simple adjustment of the excitation levels at the initial stages of the movement can set the velocity profile of the whole movement. A simple model of octopus arm extension is proposed in which the driving force is set initially and is then decreased in proportion to arm diameter at the bend. The model qualitatively reproduces the typical velocity profiles of octopus reaching movements, suggesting a simple control mechanism for bend propagation in the octopus arm.  相似文献   

6.
Thirty-two patients with absent elbow flexion secondary to brachial plexus injury underwent nerve transfer using 1 or 2 fascicles of the ulnar nerve to the motor branch of the biceps muscle. Twenty-six patients had root avulsion injury of C5 and C6; 4 had root avulsion injury of C5, C6, and C7; and 2 had lateral and posterior cord injury with distal injury of the musculocutaneous nerve. The follow-up period ranged from 11 to 40 months (average, 18 months). Thirty patients had biceps strength of M4 (flexion power ranged from 0.5 to 7 kg) and 1 had biceps strength of M3. All but 1 patient demonstrated signs of recovery of the biceps muscle. No notable impairment of hand function was observed.  相似文献   

7.
Surface EMG is hardly used to estimate motor unit (MU) characteristics, while its non-invasiveness is less stressful for patients and allows multi-electrode recordings to investigate different sites of the muscle and MU. The present study compares motor unit potentials (MUPs) obtained with surface EMG and macro EMG during voluntary contraction of the biceps brachii muscle of patients with enlarged MUs caused by prior poliomyelitis. Averaged surface MUPs were obtained by means of needle EMG (SMUP1) and surface EMG (SMUP2) triggering. The MUPs area and peak amplitudes correlated well when comparing the macro MUP and SMUP1 of the same MUs. When MU populations of different patients were compared, the SMUP1s and SMUP2s were equally sensitive to pathology as macro MUPs. In this, the late non-propagating positive wave (only present in unipolar recordings) is more robust than the triphasic propagating wave. Therefore, surface EMG can be used for detecting enlarged MUs.  相似文献   

8.
1. Four subjects performed fast flexions of the elbow or shoulder over three different distances. Elbow flexions were performed both in a horizontal, single-degree-of-freedom manipulandum and in a sagittal plane with the limb unconstrained. Shoulder flexions were only performed in the sagittal plane by the unconstrained limb. We simultaneously recorded kinematic and electromyographic (EMG) patterns at the "focal" joint, that which the subject intentionally flexed, and at the other, "nonfocal" joint that the subject had been instructed to not flex. 2. Comparisons of the elbow EMG patterns across tasks show that agonist and antagonist muscles were similar in pattern but not size, reflecting the net muscle torque patterns. Comparisons at the shoulder also revealed similar EMG patterns across tasks that reflected net muscle torques. 3. Comparisons of EMG patterns across joints show that elbow and shoulder flexors behaved similarly. This was not true of the extensors. The triceps EMG burst was delayed for longer distances but the posterior deltoid had an early, distance-invariant onset. 4. Similarities in EMG reflect torque demands required at the focal joint to produce flexion and at the nonfocal joint to reduce extension induced by dynamic interactions with the focal, flexing joint. These similarities appear despite very different kinematic intentions and outcomes. This argues against a strong role for length-sensitive reflexes in their generation. 5. These results support the hypothesis that movements are controlled by muscle activation patterns that are planned for the expected torque requirements of the task. This general rule is true whether we are performing single-joint or multiple-joint movements, with or without external constraints. The similarities between single-joint and multijoint movement control may be a consequence of ontogenetic development of multijoint movement strategies that prove useful and are therefore also expressed under the constrained conditions of specialized tasks such as those performed in single-joint manipulanda.  相似文献   

9.
OBJECTIVE: Post-polio subjects experience functional deterioration many years after developing acute poliomyelitis and have been shown previously to have a deficit in strength recovery after isometric activity. This study characterized the size and stability of the motor units in a group of post-polio subjects with macro and single fiber electromyography (EMG) and correlated these variables with isometric strength, endurance, "work capacity," and strength recovery after fatiguing isometric exercise. DESIGN: A cohort of 12 post-polio subjects was tested for neuromuscular function. Electromyographic variables were determined on a separate day. SETTING: Volunteers were recruited from the community and tested in our neuromuscular research laboratory. SUBJECTS: A volunteer sample was obtained from advertisements. All subjects acknowledged post-polio syndrome symptoms. MAIN OUTCOME MEASURES: Neuromuscular variables were isometric knee extension peak torque, endurance (time to exhaustion) at 40% of maximal torque, tension time index, and recovery of torque at 10 minutes. Electromyographic variables were macro EMG and single fiber EMG (percent blocking and jitter). RESULTS: Macro EMG amplitude was ninefold the control value, and both jitter and blocking were greatly increased in comparison to control values. Isometric strength significantly (p < .05) correlated negatively with macro EMG amplitude. CONCLUSIONS: The weakest subjects had the greatest number of muscle fibers within the motor unit (as measured by macro EMG amplitude). Jitter and blocking did not correlate with neuromuscular function.  相似文献   

10.
Underhand pitching has received minimal attention in the sports medicine literature. This may be due to the perception that, compared with overhead pitching, the underhand motion creates less stress on the arm, which results in fewer injuries. The purpose of this study was to calculate kinematic and kinetic parameters for the pitching motion used in fast pitch softball. Eight female fast pitch softball pitchers were recorded with a four-camera system (200 Hz). The results indicated that high forces and torques were experienced at the shoulder and elbow during the delivery phase. Peak compressive forces at the elbow and shoulder equal to 70-98% of body weight were produced. Shoulder extension and abduction torques equal to 9-10% of body weight x height were calculated. Elbow flexion torque was exerted to control elbow extension and initiate elbow flexion. The demand on the biceps labrum complex to simultaneously resist glenohumeral distraction and produce elbow flexion makes this structure susceptible to overuse injury.  相似文献   

11.
Two experiments investigated the response complexity effect using elbow extension/flexion movements. In Exp 1 with 30 undergraduates, reaction time (RT) for an extension movement was significantly less than RT for an extension/flexion movement. However, this difference in RT was not evident when participants were asked to pause at the reversal of the extension/flexion for approximately 260 msec. Exp 2 with 10 undergraduates manipulated the duration of the pause between these movements and also measured the electromyographical activity of the triceps and biceps muscles. When the pause was reduced to 75 msec, Ss were not able to program the flexion portion of the movement at the reversal, forcing them to preprogram this movement: hence, increasing their premotor RT. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Hyperactive spinal stretch reflexes (SSRs) often occur with spinal cord injuries (SCI). These altered SSRs may impair movement. Recent studies in monkeys and human subjects have indicated that the magnitude of SSRs can be modulated using operant conditioning. The purpose of this study was to determine whether hyperactive biceps brachii SSRs could be operantly conditioned downward. Seventeen chronic (> 1 year postlesion) spinal cord-injured patients participated. Subjects were trained to keep biceps background (prestretch) electromyographic (EMG) activity and elbow angle at predetermined levels prior to having the elbow rapidly extended by a torque motor to elicit the biceps SSR. All subjects participated in six baseline sessions over a 2-week period. Then, subjects were randomly assigned to either control or training groups for the next 24 sessions over an 8-week period. By the end of the study, training subjects had significantly reduced biceps SSRs (t test, P < 0.001), while control subjects SSRs were not significantly reduced (t test, P > 0.05). The reduced SSRs persisted for up to 4 months following cessation of training. The results of this study support the hypothesis that hyperactive SSRs can be operantly conditioned downward in SCI patients.  相似文献   

13.
The purpose of the present investigation was to examine the effects of forearm angular velocity on the mechanomyographic (MMG) and electromyographic (EMG) responses to eccentric and concentric isokinetic muscle actions. Ten adult male volunteers (mean+/-SD age=23+/-2 years) performed maximal eccentric and concentric muscle actions of the forearm flexors at 30 degrees, 90 degrees, and 150 degrees s(-1). There was no significant (P> 0.05) velocity-related change in peak torque (PT) for the eccentric muscle actions, but there was a significant (P < 0.05) decrease in PT for the concentric muscle actions. For the eccentric and concentric muscle actions, there was a significant (P< 0.05) velocity-related increase in MMG amplitude. There was no significant (P < 0.05) change in EMG amplitude across velocity for the eccentric or concentric muscle actions. The results indicated velocity-related dissociations among the PT, MMG, and EMG responses to maximal eccentric and concentric isokinetic muscle actions.  相似文献   

14.
We investigated factors affecting maximal voluntary torque and the assessment of the level of voluntary drive in the elbow flexor muscles. First, the effective compliance of the system was tested by using single, paired, and trains of four stimuli to measure voluntary activation. At high voluntary torques the responses to all these stimuli were identical, suggesting that single stimuli are adequate for estimating voluntary drive. Second, the contribution of torque from synergist elbow flexor muscles was assessed. In attempted maximal voluntary contractions (MVCs), the voluntary activation of brachioradialis (median 91.5%, range 68.9-100%) was lower than for biceps brachii (median 99.1%, range 78.5-100%; P < 0.01). This suggests extra torque may be generated by brachioradialis during elbow flexion, beyond the torque where biceps brachii is maximally activated. Finally, lengthening of the elbow flexors occurred during MVCs, due to slight shoulder movements. This would allow force to increase independently of an increase in voluntary drive.  相似文献   

15.
This research examined behavioral (i.e. movement time) and neuromuscular (EMG) characteristics of unilateral and bilateral aiming movements of children with normal motor development and children with developmental coordination disorders (DCD). Two age groups of children were studied: 6 to 7, and 9 to 10 year olds. Bilateral aiming movements involved moving the two hands to targets of either (1) the same amplitude--symmetrical bilateral movements, or (2) different amplitudes--asymmetrical bilateral movements. Unilateral aiming movements involved moving one hand to either near or far targets associated with that hand. In general, unilateral and bilateral movement times were slower in younger than older children, and in children with DCD than children with normal motor development. Our neuromuscular data suggest that the faster movement times that typically accompany increasing age in children may be the result of a change in the capacity to initiate antagonist muscle contractions. The prolonged burst of agonist activity and delayed onset of antagonist activity observed in children with DCD may contribute to their inability to produce fast, accurate unilateral movements. On both symmetrical and asymmetrical bilateral aiming movements, children with DCD had more performance errors and greater temporal inconsistencies between neuromuscular (EMG) parameters and behavioral (movement time) parameters than children with normal motor development. These new neuromuscular data suggest that there are important differences in the way the motor control systems of children with and without DCD organize bilateral aiming responses.  相似文献   

16.
Because resistance exercise (REX) and unloading induce opposing neuromuscular adaptations, we tested the efficacy of REX against the effects of 14 d of bed rest unloading (BRU) on the plantar flexor muscle group. Sixteen men were randomly assigned to no exercise (NOE, N = 8) or REX (N = 8). REX performed 5 sets x 6-10 repetitions to failure of constant resistance concentric/eccentric plantar flexion every other day during BRU. One-repetition maximum (1RM) strength was tested on the training device. The angle-specific torque-velocity relationship across 5 velocities (0, 0.52, 1.05, 1.75, and 2.97 rad.s-1) and the full range-of-motion power-velocity relationship were assessed on a dynamometer. Torque-position analyses identified strength changes at shortened, neutral, and stretched muscle lengths. Concentric and eccentric contractile work were measured across ten repetitions at 1.05 rad.s-1. Maximal neural activation was measured by surface electromyography (EMG). 1RM decreased 9% in NOE and improved 11% in REX (P < 0.05). Concentric (0.52 and 1.05 rad.s-1), eccentric (0.52 and 2.97 rad.s-1), and isometric angle-specific torques decreased (P < 0.05) in NOE, averaging 18%, 17%, and 13%, respectively. Power dropped (P < 0.05) in NOE at three eccentric (21%) and two concentric (14%) velocities. REX protected angle-specific torque and average power at all velocities. Concentric and eccentric strength decreased at stretched (16%) and neutral (17%) muscle lengths (P < 0.05) in NOE while REX maintained or improved strength at all joint positions. Concentric (15%) and eccentric (11%) contractile work fell in NOE (P < 0.05) but not in REX. Maximal plantar flexor EMG did not change in either group. In summary, constant resistance concentric/eccentric REX completely prevented plantar flexor performance deconditioning induced by BRU. The reported benefits of REX should prove useful in prescribing exercise for astronauts in microgravity and for patients susceptible to functional decline during bed- or chair-bound hospital stays.  相似文献   

17.
We have examined EMG-movement relations in two-joint planar arm movements to determine the influence of interactional torques on movement coordination. Explicitly defined combinations of elbow movements (ranging from 20 to 70 degrees) and wrist movements (ranging from 20 to 40 degrees) were performed during a visual, step-tracking task in which subjects were specifically required to attend to the initial and final angles at each joint. In all conditions the wrist and elbow rotated in the same direction, that is, flexion-flexion or extension-extension. Elbow movement kinematics were only slightly influenced by motion about the wrist. In contrast, the trajectory of the wrist movement was significantly influenced by uncompensated reaction torques resulting from movement about the elbow joint. At any given wrist amplitude, wrist movement duration increased and peak velocity decreased as elbow amplitude increased. In addition, as elbow amplitude increased, wrist movement onset was progressively delayed relative to this elbow movement. Surprisingly, the changes between joint movement onsets were not accompanied by corresponding changes between agonist EMG onsets at the elbow and wrist joints. The mean difference in onset times between elbow and wrist agonists (22-30 ms) remained unchanged across conditions. In addition, a basic pattern of muscle activation that scaled with movement amplitude was observed at each joint. Phasic agonist activity at the wrist and elbow joints remained remarkably similar across conditions and thus the changes in joint movement onset could not be attributed to changes in the motor commands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Conventionally, the hamstring:quadriceps strength ratio is calculated by dividing the maximal knee flexor (hamstring) moment by the maximal knee extensor (quadriceps) moment measured at identical angular velocity and contraction mode. The agonist-antagonist strength relationship for knee extension and flexion may, however, be better described by the more functional ratios of eccentric hamstring to concentric quadriceps moments (extension), and concentric hamstring to eccentric quadriceps moments (flexion). We compared functional and conventional isokinetic hamstring: quadriceps strength ratios and examined their relation to knee joint angle and joint angular velocity. Peak and angle-specific (50 degrees, 40 degrees, and 30 degrees of knee flexion) moments were determined during maximal concentric and eccentric muscle contractions (10 degrees to 90 degrees of motion; 30 and 240 deg/sec). Across movement speeds and contraction modes the functional ratios for different moments varied between 0.3 and 1.0 (peak and 50 degrees), 0.4 and 1.1 (40 degrees), and 0.4 and 1.4 (30 degrees). In contrast, conventional hamstring:quadriceps ratios were 0.5 to 0.6 based on peak and 50 degrees moments, 0.6 to 0.7 based on 40 degrees moment, and 0.6 to 0.8 based on 30 degrees moment. The functional hamstring:quadriceps ratio for fast knee extension yielded a 1:1 relationship, which increased with extended knee joint position, indicating a significant capacity of the hamstring muscles to provide dynamic knee joint stability in these conditions. The evaluation of knee joint function by use of isokinetic dynamometry should comprise data on functional and conventional hamstring:quadriceps ratios as well as data on absolute muscle strength.  相似文献   

19.
The functions of ipsilateral cutaneous reflexes were studied with short trains of stimuli presented pseudorandomly to the superficial peroneal (SP) and tibial nerves during human gait. Electromyograms (EMGs) of tibialis anterior (TA), soleus, lateral and medial gastrocnemius, vastus lateralis (VL), and biceps femoris (BF) muscle were recorded, together with ankle and knee joint angles. Net reflex EMG responses were quantified in each of the 16 parts of the step cycle according to a recently developed technique. After SP nerve stimulation, TA muscle showed a significant suppression during swing phase that was highly correlated to ankle plantarflexion. BF and VL muscles were both excited throughout swing and significantly correlated to knee flexion during early swing. Tibial nerve stimulation caused dorsiflexion during late stance, but plantarflexion during late swing. We argue that SP nerve reflexes are indicative of a stumbling corrective response to nonnoxious electrical stimulation in humans. The correlated kinematic responses after tibial nerve stimulation may allow smooth movement of the swing leg so as to prevent tripping during swing and to assist placing and weight acceptance at the beginning of stance.  相似文献   

20.
A number of receptor subtypes mediate hormonal responses to serotonin (5-HT). To test the hypothesis that the hypothalamic paraventricular nucleus (PVN) mediates 5-HT1A and 5-HT2 receptor-mediated oxytocin, PRL, and corticosterone responses, we studied the effects of the 5-HT1A agonist ipsapirone and the 5-HT2A/2C agonist 1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane (DOI) after surgical PVN lesions or sham operations. Chronically cannulated, conscious, freely moving, male Wistar rats were injected iv (1 mg/kg) shortly after (3-4 days) and 5 weeks after (35-37 days) the operations. In sham-operated rats, ipsapirone caused marked elevations in plasma PRL and corticosterone, but not oxytocin concentrations, whereas DOI increased plasma concentrations of all three hormones. Short term PVN lesions prevented ipsapirone-induced corticosterone and DOI-induced oxytocin responses. DOI-induced PRL and corticosterone responses were also markedly inhibited 3-4 days after lesioning, although small rises over the baseline values were still observed. The ipsapirone-induced PRL response was unaffected by the lesioning. Five weeks after PVN lesioning, partial recoveries were observed in ipsapirone- and DOI-induced corticosterone and DOI-induced oxytocin responses, whereas DOI-induced PRL responses remained suppressed. The present findings suggest that the PVN or neural pathways close to it mediate oxytocin, PRL, and corticosterone responses to the 5-HT2 receptor agonist DOI as well as corticosterone, but not PRL, responses to the 5-HT1A receptor agonist ipsapirone. The results after long term PVN lesioning show that the oxytocin and corticosterone responses may be partially restored with time after lesioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号