首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethylene and polypropylene have been treated with fluorine/nitrogen or fluorine/oxygen/nitrogen mixtures at atmospheric pressure. Changes in surface chemistry and topography as well as depth of fluorination have been examined using Fourier transform infra-red analysis, X-ray photoelectron spectroscopy (X.p.s.), atomic force microscopy (AFM) and ellipsometry. Even very short exposure times caused a large substitution of the hydrogen atoms by fluorine. No change in surface topography was noticed at magnifications of up to 5000 times with the scanning electron microscope (SEM), but AFM showed that fluorination led to an increase of microroughness. The influence of fluorine or fluorine/oxygen concentration, as well as time of treatment and time of storage before adhesive bonding, on adhesion of polypropylene to steel was investigated with a bending peel test. Significant improvement in peel strength was already achieved with minor fluorination intensity. Increase of fluorination intensity did not lead to further improvement in peel strength. Analysis of the fracture surfaces was carried out with the SEM and by energy dispersive X-ray spectroscopy and X.p.s. The findings showed that the samples failed cohesively in the polymer or directly beneath the fluorinated layer. A model to describe the formation of specific interactions between substrate and adhesive is suggested.  相似文献   

2.
王凤英 《上海涂料》2010,48(9):22-25
以丙烯酸酯为共聚单体,采用预乳液聚合方法制备了乳液型压敏胶。通过实验发现:乳液相对分子质量、软硬单体的配比、乳化剂、引发剂、pH值均对压敏胶的初黏力、剥离强度和持黏力有影响。聚合反应温度约84℃、反应体系pH值约8、软单体用量为93%时,乳液型丙烯酸酯类压敏胶的初黏力、剥离强度和持黏力最好,由此成功研制成黏结性能优异的环保型丙烯酸酯乳液型压敏胶。  相似文献   

3.
The aim of this study was to investigate the adhesion behavior of polyphenylquinoxaline (PPQ) foils. PPQ foils were initially produced and then annealed in vacuum furnace at different temperatures. The surface of PPQ was activated with GHz‐low pressure plasma (lp‐plasma) using oxidative (O2) and noble (Ar, Ar/He) gases. An epoxy adhesive was used to glue the PPQ foil with a sheet of steel. The adhesions of foils were examined using 90°‐peel test. Observations from scanning electron microscopy (SEM) and atomic force microscopy (AFM) in addition to the gravimetry measurements were used to interpretate the effects of plasma treatment of adhesion of foils. The results showed that the peeling resistance values were significantly dependent on plasma treatment time and power as well as annealing conditions. In case of PPQ foils where the adhesion was significantly enhanced, it was observed that the fracture changed from adhesion mode at the interface between the adhesive layer and the PPQ foil to cohesive mode, which was seen either in the layer nearby the PPQ surfaces or in the foil itself. Furthermore, furrowed structures were observed at the fracture surface and they were oriented transversely to the peeling direction. SEM and AFM graphs showed that the surface roughness of PPQ foils increased significantly with increasing plasma treatment time and it was more pronounced when using oxidative than noble gas. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39949.  相似文献   

4.
LaRC-TPI, an aromatic thermoplastic polyimide, was exposed to oxygen, argon and ammonia plasmas as pretreatments for adhesive bonding. A 180[ddot] peel test with an acrylate-based pressure sensitive adhesive tape as an adherend was utilized to study the interactions of the plasma-treated polyimide surface with another polymeric material. The peel strengths of the pressure sensitive adhesive tape on the plasma-treated LaRC-TPI fell below the level of the non-treated controls, regardless of the plasma treatment used. Failure surface analysis by XPS revealed the presence of polyimide on the pressure sensitive adhesive failure surface, indicating failure in the plane of a weak boundary layer created by plasma treatment. The removal of the weak boundary layer by a solvent rinse restored the peel strength to the level of the control. Comparison with tape adhesion peel strengths of oxygen plasma-treated high density polyethylene showed that the physical condition of a polymer surface following plasma treatment plays an important role in determining the level of adhesion which can be achieved.  相似文献   

5.
In the fabrication of fiber-reinforced plastics materials peel plies are commonly used as an additional layer on top of the laminates to sponge up the surplus resin and to create an activated surface for adhesive bonding or coating by peel ply removal. In theory, the peel ply removal results in a new and uncontaminated fracture surface that is activated by polymer chain scission. The peel ply method is often presented as being a good surface treatment for structural bonding.

In this study carbon fiber-reinforced plastics (Hexcel® 8552/ IM7) were produced by the use of five different peel plies and a release foil made of polytetrafluorethylene (PTFE). The peel plies themselves and the surfaces on the CFRP created by peeling were examined by scanning electron microscopy (SEM), x-ray photo electron spectroscopy (XPS), energy-dispersive x-ray spectroscopy (EDX), infrared (IR) spectroscopy, atomic force microscopy (AFM), and contact angle measurements to characterize the surfaces produced. Furthermore, the bond strength of lap shear and floating roller peel samples was determined with and without additional plasma treatment. For bonding, a room temperature-curing two-component-epoxy adhesive (Hysol® 9395) was used to prove the applicability of different peel plies for structural adhesive bonding under repair conditions.  相似文献   

6.
单组分丙烯酸酯乳液复膜胶的研制   总被引:1,自引:0,他引:1  
采用预乳化半连续乳液聚合工艺,合成了一种丙烯酸酯乳液复膜胶,探讨了单体、乳化剂、增黏树脂乳液及熟化时间等对复膜胶复合强度的影响以及功能单体、乳化剂对黏度的影响。结果表明:BA/EA为10/7,AN/MA为3/6,HPA为4份,β-CEA为5份时,复膜胶的复合强度最好;乳液复膜胶的黏度随功能单体β-CEA、HPA和乳化剂用量的增加而增大。所合成的复膜胶用于包装和印刷行业的塑塑、铝塑及纸塑复合,剥离强度大于2.0N/15mm。  相似文献   

7.
We made clear the cause of the increase in peel strength of pressure sensitive (PS) adhesives as a function of contact time, and investigated how to modify PS adhesives to maintain a low and constant peel strength for a long time. It was found that polar groups in the adhesive orient to the interface between the adhesive and the (stainless steel) metal substrate (SUS 304) so as to minimize interfacial free energy during adhesion, and the orientation increased affinity between the adhesive and the metal material and increased the peel strength as a result. The use of modifier which contained both P(MMA-co-SiMA) and PDMS showed an excellent modification effect, although modification with only PDMS or P(MMA-co-SiMA) was not sufficient. It was suggested that PDMS which migrated to the surface was extended uniformly over the surface by PDMS segments of P(MMA-co-SiMA) and that the enriched layer of PDMS on the adhesive surface worked as a barrier to prevent the orientation of polar groups in bulk. Therefore, low and constant peel strength could be achieved.  相似文献   

8.
We made clear the cause of the increase in peel strength of pressure sensitive (PS) adhesives as a function of contact time, and investigated how to modify PS adhesives to maintain a low and constant peel strength for a long time. It was found that polar groups in the adhesive orient to the interface between the adhesive and the (stainless steel) metal substrate (SUS 304) so as to minimize interfacial free energy during adhesion, and the orientation increased affinity between the adhesive and the metal material and increased the peel strength as a result. The use of modifier which contained both P(MMA-co-SiMA) and PDMS showed an excellent modification effect, although modification with only PDMS or P(MMA-co-SiMA) was not sufficient. It was suggested that PDMS which migrated to the surface was extended uniformly over the surface by PDMS segments of P(MMA-co-SiMA) and that the enriched layer of PDMS on the adhesive surface worked as a barrier to prevent the orientation of polar groups in bulk. Therefore, low and constant peel strength could be achieved.  相似文献   

9.
The performance of a pharmaceutical pressure sensitive adhesive, whose liquid formulation is based on a multicomponent mixture of solvents, has been examined during two peel adhesion types of tests (90° dynamic adhesive strength peel test and 180° release liner peel test). The experiments were carried out under various drying temperatures, initial coating thickness, and types of backing film and release liner. The results show that the peel force depends mainly on the dry film weight of the tested adhesive. The type of the backing film which is used to form the adhesive also affects its peel adhesion properties.  相似文献   

10.
ABSTRACT

The performance of a pharmaceutical pressure sensitive adhesive, whose liquid formulation is based on a multicomponent mixture of solvents, has been examined during two peel adhesion types of tests (90° dynamic adhesive strength peel test and 180° release liner peel test). The experiments were carried out under various drying temperatures, initial coating thickness, and types of backing film and release liner. The results show that the peel force depends mainly on the dry film weight of the tested adhesive. The type of the backing film which is used to form the adhesive also affects its peel adhesion properties.  相似文献   

11.
压敏胶粘剂的贮存寿命试验研究   总被引:4,自引:0,他引:4  
采用不同温度、湿度的湿热加速老化试验方法,以剥离强度为指标,评估压敏胶粘剂的粘接贮存寿命。  相似文献   

12.
In this study, Upilex-S [poly(biphenyl dianhydride-p-phenylene diamine)], one of polyimide films, was modified by coupling reactions with N,N-carbonyldiimidazole (CDI) to increase adhesion to copper for flexible copper clad laminate (FCCL). Imidazole groups show strong interaction with copper metal to make charge transfer complexes. Because polyimide film did not have active site with coupling agent, the film surfaces were modified by aqueous KOH solutions and reacted with dilute HCl solutions.Surface modified Upilex-S was analyzed by X-ray photoelectron spectroscopy (XPS) to examine the surface chemical composition and film morphology and investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Changes in the wettability were evaluated by measuring contact angle with the sessile drop method. After deposition of copper on surface modified Upilx-S, the adhesion strength of the copper/polyimide system was measured by a 90° peel test using the Instron tensile strength tester. The peel strength of the copper/polyimide system increased from 0.25 to 0.86 kgf/cm by surface modification. This result confirmed that the CDI coupling reaction is an effective treatment method for the improvement of the adhesion property between copper metal and polyimide film.  相似文献   

13.
Surfaces of poly(isobutylene) (PIB) and poly(butylacrylate) (PBA) pressure‐sensitive adhesive tapes were treated by oxygen plasma, and effects of surface modification on their adhesive behavior were investigated from the viewpoint of peel adhesion. The peel adhesion between PIB and PBA pressure‐sensitive adhesive tapes and stainless steel has been improved by the oxygen plasma treatment. The surface‐modification layer was formed on PIB and PBA pressure‐sensitive adhesive surfaces by the oxygen plasma treatment. The oxygen plasma treatment led to the formation of functional groups such as various carbonyl groups. The treated layer was restricted to the topmost layer (50–300 nm) from the surface. The GPC curves of the oxygen plasma‐treated PBA adhesive were less changed. Although a degradation product of 1–3% was formed in the process of the oxygen plasma treatment of the PIB adhesive. There are differences in the oxygen plasma treatment between the PIB and PBA adhesives. A close relationship was recognized between the amount of carbonyl groups and peel adhesion. Therefore, the carbonyl groups formed on the PIB and PBA adhesive surfaces may be a main factor to improve the peel adhesion between the PIB and PBA adhesive and stainless steel. The peel adhesion could be controlled by changing the carbonyl concentration on the PIB and PBA adhesive surfaces. We speculate that the carbonyl groups on the PIB and PBA adhesive surface might provide an interaction with a stainless steel surface. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1392–1401, 2000  相似文献   

14.
Cohesive laws are determined for different layer thicknesses of an engineering adhesive. The shape of the cohesive law depends on the adhesive layer thickness. Of the two parameters of the cohesive law—the fracture energy and the strength—the fracture energy is more sensitive to thickness variation than the strength. The fracture energy in peel mode (Mode I) increases monotonically as the thickness is increased from 0.1 to about 1.0 mm. At an adhesive thickness of 1.5 mm, the fracture energy is slightly lower than for a 1.0 mm adhesive thickness, indicating a maximum between 1.0 and 1.5 mm. In shear mode (Mode II), the thickness dependence is not as strong, but an increasing trend in fracture energy with increasing adhesive thickness is evident. A slight decrease in strength with increasing adhesive thickness is found in both loading modes.  相似文献   

15.
An extensive study on the peel strength between a polypropylene (PP) film and PP substrate fabricated using film insert injection molding technique was carried out through a 180° peel test. Injection molding conditions such as barrel temperature, injection speed and holding pressure were varied to gauge their effects on the mechanical and morphological properties. Morphological observations were made at the film‐substrate interfacial regions by means of transmission electron microscopy (TEM). The injection molded products, with the films still attached, were subjected to bending and impact tests to determine if there is any relationship between film‐substrate adhesion and bulk properties. Observation of the load‐displacement curves during the peel test revealed three unique and interesting curves, corresponding to different peeling and film fracture mechanisms. Increases in injection speed, barrel temperature and holding pressure lead to increased bonding between the film and substrate surfaces. The enhancement of bonding between these two polymer surfaces could be attributed to polymer‐polymer interdiffusion. Substantiating evidence from TEM, which shows the fading of the interface as the bond strengthens, further boosts the accuracy of this assumption. The hope that the films could contribute to enhancing bulk properties has been diminished since the bending properties appeared to be similar with or without the film attached. Polym. Eng. Sci. 44:2327–2334, 2004. © 2004 Society of Plastics Engineers.  相似文献   

16.
Different amounts of two skin permeation enhancers, Oleic acid (OA) and Propylene glycol (PG), were mixed thoroughly with solution of a commercial acrylic pressure sensitive adhesive (Duro‐Tak). Films with different adhesive layer thickness (30 and 60 μm) were prepared by casting of formulations with a film applicator on a PET 80‐μm film and drying of solvents. Peel test was done on different formulations according to ASTM D3330. Surface study and thermal analysis were used for explaining the results. It was shown that the effect of interfacial work of adhesion on peel strength was too low to be considered. PG had no significant effect on peel strength, which was related to effect of hydrogen bonds between PG and copolymer chains acting as crosslinks. OA decreased peel strength significantly, which is due to important changes in copolymer structure. These changes can be found by relatively sharp drop in Tg values. Adhesive–cohesive transition occurred in OA formulations as a result of OA crystals formation. OA migration to surface in concentrations of more than 10 (w/w %) was confirmed by results of DSC and surface study. In contrast with PG, doubling of thickness had no effect on peel strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2987–2991, 2003  相似文献   

17.
Loop tack, peel strength, shear strength, and morphology of (benzoyl peroxide)‐cured epoxidized natural rubber (ENR 25)/(acrylonitrile‐butadiene) rubber (NBR) blend adhesive were investigated by using petro resin as the tackifying resin. Benzoyl peroxide loading varied from 1 to 5 parts by weight per hundred parts of resin (phr), whereas the petro resin loading was fixed at 40 phr. A SHEEN hand coater was used to coat the adhesive on the polyethylene terephthalate substrate at 30 μm and 120 μm coating thicknesses. (ENR 25)/NBR adhesive was crosslinked at 80°C for 30 min prior to the determination of adhesion strength by a Lloyd adhesion tester operating at 10–60 cm/min. Results show that maximum loop tack and peel strength occur at 2 phr of benzoyl peroxide loading, whereby optimum cohesive and adhesive strength are obtained. However, shear strength increases with increasing benzoyl peroxide concentration, an observation that is associated with the steady increase in the cohesive strength. Scanning electron microscopy micrograph shows that little adhesive remained on the substrate at 0 phr compared with 2 phr of benzoyl peroxide loading, indicating that crosslinking increases the peel strength of the adhesive. In all cases, the adhesion properties increase with coating thickness and testing rate . J.VINYL ADDIT. TECHNOL., 24:93–98, 2018. © 2015 Society of Plastics Engineers  相似文献   

18.
Abstract

To obtain a good bonding strength of steel/CFRP adhesive joint, the steel surface was machined by grooving process. Short aramid fibers were mixed into the adhesive layer to achieve the further adhesion strength. In the pressing process of steel/CFRP specimen preparation, short aramid fibers with the diameter of several micrometers could be embedded in the grooved gap and the rough surface of CFRP. The higher strength aramid fibers had been not only improved interfacial strength of steel/epoxy and CFRP/epoxy, but also reinforced the adhesive layer due to the bridging activities of aramid fibers. In this study, Mode II fracture strength of grooved-steel/CFRP adhesive joints was investigated by end-notch bending test. The ultimate load and fracture energy of specimens have been improved by 15.7 and 6.8%, in comparison to specimens with smooth steel surface, respectively. The reinforcing mechanisms of CFRP/steel bonding joint as a result of short aramid fibers were discussed according to the failure modes of specimens, and scanning electron microscopy observation and experimental results were carried out.  相似文献   

19.
In this study, the adhesion strength of three epoxy resins, which are used as basic materials for epoxy molding compound (EMC) in microelectronics, to copper leadframe was determined using the peel test. The epoxy resins used were O-cresol Novolac (OCN), dicyclopentadiene (DCPD), and biphenyl sulfide (BIPHS) epoxy resins. It was found that DCPD showed the highest peel strength and OCN had the lowest value. The difference in the peel strength was explained by investigating the physical and mechanical properties, as well as the surface properties of the epoxy resins. These properties included the surface energy, viscosity and gelation time, fracture toughness, and the coefficient of thermal expansion. As a result of the lower viscosity of BIPHS and DCPD than OCN epoxy resin, BIPHS and DCPD have a better peel strength than OCN. The DCPD resin has a better peel strength than BIPHS because of its higher fracture toughness.  相似文献   

20.
In this study, the effects of methyl methacrylate (MMA), trimethylolpropane triacrylate (TMPTA), difunctional silicone urethane acrylate oligomer, and UV-dose on the adhesive properties of UV-curable pressure-sensitive adhesives (PSAs) were investigated, for further optimizing the adhesive properties to meet the requirements on high holding power and low peel strength. The results illustrated that increasing the MMA content decreased the peel strength and improved the holding power. The variation of TMPTA content from 1 to 10 wt% significantly enhanced the holding power from 1?h to above 120?h. The gel fraction increased with increasing TMPTA content. This increment was caused by the cross-linking of TMPTA after UV exposure. The peel strength of UV-curable PSAs was reduced to zero when oligomer content was more than 40 wt%, whereas the holding power was significantly enhanced from 5?h to above 120?h as the oligomer content increased up to 70 wt%. When the UV-dose increased, the peel strength decreased and the holding power increased. Therefore, UV-curable PSAs with very low peel strength and high holding power above 120?h were successfully synthesized and they possessed desirable features which could be fabricated to meet the specific requirements for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号