首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
InxGa1-xAs quantum wells grown pseudomorphically in GaAs and AlGaAs with values ofx up to 0.25 have been studied by photoluminescence under high hydrostatic pressure. We concentrate here on the pressure range where the emissions quench and take on the characteristics of theX-minima. In the InGaAs/GaAs structures, these transitions display an unexpected pressure coefficient, -2.6 meV/kbar, twice that of theX minima in GaAs. We assign these transitions to theX minima in the wells, and therefore make a direct measurement of the strainedX positions as a function of composition. In the InGaAs/AIGaAs structures the crossovers occur against theX-minima in the barriers and these crossovers yield an accurate value for the band offset ratio for InGaAs/GaAs heterojunctions which is found to be 60:40 (CB:VB).  相似文献   

2.
We performed 1—2 keVcathodoluminescence measurements and He-Ne and HeCd excited photoluminescence studies of ZnSe/GaAs( 100) heterostructures grown by molecular beam epitaxy. Our goal was to investigate the deep level electronic structure and its connection with the heterojunction band offsets. We observed novel deep level emission features at 0.8, 0.98, 1.14, and 1.3 eV which are characteristic of the ZnSe overlayer and independent in energy of overlayer thickness. The corresponding deep levels lie far below those of the near-bandedge features commonly used to characterize the ZnSe crystal quality. The relative intensity and spatial distribution of the deep level emission was found to be strongly affected by the Zn/Se atomic flux ratio employed during ZnSe growth. The same flux ratio has been shown to influence both the quality of the ZnSe overlayer and the band offset in ZnSe/GaAs heterojunctions. In heterostructures fabricated in Se-rich growth conditions, that minimize the valence band offset and the concentration of Se vacancies, the dominant deep level emission is at 1.3 eV. For heterostructures fabricated in Zn-rich growth conditions, emission by multiple levels at 0.88,0.98, and 1.14 eV dominates. The spectral energies and intensities of deep level transitions reported here provide a characteristic indicator of ZnSe epilayer stoichiometry and near-interface defect densities.  相似文献   

3.
We have performed nitrogen atomic-layer doping into GaAs, AlGaAs, and AlGaAs/GaAs single quantum wells using atomic nitrogen cracked by a hot tungsten filament. While the atomic-layer-doped GaAs layers show a series of sharp and strong photoluminescence lines relating to excitons bound to nitrogen atoms at 8K, atomic-layer-doped AlGaAs layers show several broad nitrogen-related lines. For the atomic-layer-doped single quantum well at the center of the GaAs layer, the quantum well luminescence itself disappears and a dominant and sharp luminescence is observed at a longer wavelength. It is found that the As pressure during the atomic-layer doping greatly affects the luminescence characteristics.  相似文献   

4.
GaInP layers were grown selectively by low pressure MOVPE in patterned SiO2 masks on GaAs (100) substrates. The variation of the composition and spontaneous ordering phenomena were analysed by Raman spectroscopy and photoluminescence. In contrast to GaInAs, the composition of GalnP shows only a very weak dependence on the size of the structures. On the other hand, there is a shift of the bandgap energy up to 40 meV with decreasing size of the stripes caused by ordering of the Ga and In atoms. Based on these findings lattice matched GaAs/GalnP multilayers were grown to delineate the growth history of the structures. It was demonstrated that the growth habit of deposition in narrow slits (>1μm) can be used to produce mesa-like stripes with dimensions below 100 nm on top of the mesa. Results of GaAs/GaInP quantum wells selectively grown on top of a mesa are presented.  相似文献   

5.
Using contactless electroreflectance (CER) and piezoreflectance at 300 K we have characterized a GaAs/GaAs1?xPx multiple quantum well (MQW) structure, “GaAs” (nominal) and GaAsP epilayers grown by chloride transport chemical vapor deposition on GaAs (001) substrates. From a detailed lineshape fit to the CER data from the epilayers we have determined the energies of the fundamental band gap and hence the phosphorous composition. The nominal “GaAs” epilayers were found to have phosphorous compositions of about 2.5–3.2%, a result of the phosphorous diffusion between growth chambers in the reactor. The GaAs1?xPx epilayer had x=0.29. For the GaAs0.97P0.03/GaAs0.71P0.29MQW comparison between the experimentally observed energies of a number of quantum transitions with a theoretical envelope function calculation, including the effects of strain in the barriers, made it possible to evaluate the unstrained conduction band offset parameter Qc=0.50±0.05. Our value for this parameter is discussed in relation to other works. Atomic force microscopy was employed to investigate the surface morphology of the 230 Å GaAsP top layer of the MQW in addition to a 2000 Å GaAsP epilayer. From the absence of any cross-hatch pattern associated with misfit dislocations on the former we concluded that the GaAsP in the MQW is pseudomorphic. On the other hand the 2000 Å epilayer exhibited signs of strain relaxation.  相似文献   

6.
在15K下测量了InAs/GaAs亚单层结构的静压光致发光,静压范围为0~8GPa.常压下InAs层中重空穴激子的发光峰随InAs层厚的减小向高能移动,同时峰宽变窄,强度减小.其压力行为与GaAs基体的基本一致,表明量子阱(线、点)模型仍适用于InAs/GaAs亚单层结构.得到平均厚度为1/3单分子层的样品中由于附加的横向限制效应引起的电子和空穴束缚能的增加分别为23和42meV  相似文献   

7.
Low temperature photoluminescence (PL) measurements on pseudomorphic modulation-doped transistors with a low-temperature (LT) GaAs layer in the GaAs buffer layer clearly show a decrease in the quantum well PL transition energies compared to a structure with no LT GaAs. Self-consistent calculations of the electron and hole bandstructure suggest that the observed increase in the redshift in PL energies with increasing quantum well-LT GaAs spacing can be attributed to band bending induced by the Fermi level pinning at the undoped GaAs/LT GaAs interface and a novel carrier compensation effect of LT GaAs.  相似文献   

8.
By monitoring the cyclic behavior of surface photoabsorption (SPA) reflectance changes during the growth of GaAs at 650°C and with sufficient H2 purging time between the supply of trimethylgallium and AsH3, we have been able to achieve controlled growth of GaAs down to a monolayer. Our results show, as confirmed by photoluminescence (PL) measurements, the possibility of growing highly accurate quantum well heterostructures by metalorganic chemical vapor deposition at conventional growth temperatures. We also present our PL measurements on the InGaAs single quantum wells grown at this temperature by monitoring the SPA signal.  相似文献   

9.
Hot-electron magnetophonon resonances in the effective temperature Teff of photo-excited carriers in GaAs/AlxGa1-xAs quantum wells have been observed using photoluminescence for the first time. The technique has been demonstrated to be applicable to both doped and undoped structures, allowing the hot-electron magnetophonon effect in the latter to be studied. The experimental data are in good agreement with values of Teff=Teff(B) calculated using a modell or the energy relaxation of hot two-dimensional carriers in a strong magnetic field.  相似文献   

10.
InGaAs/GaAs MOCVD-grown quantum wells have been investigated. Photoluminescence (PL) measurements have shown heavy-hole-related excitonic transitions within the temperature range from 10 to 100 K for all samples. In room-temperature photoreflectance (PR), sharp heavy- and light-hole excitonic transitions in the quantum wells have been observed. The transition energies obtained have been compared with values derived from theoretical considerations using the envelope function model including lattice-mismatch-related stress. The heavy- and light-hole transitions have been identified as excitonic transitions of types I and II respectively. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
We present results of photoluminescence and cathodoluminescence measurements of strained undoped In0.15Ga0.85As/GaAs and In0.15Ga0.85As/Al0.15Ga0.85As quantum well structures, designed to throw light on the current controversy over light-hole band alignment at low In content. We compare these data with theoretical calculations of the confined state energies within the eight band effective mass approximation. Our analysis shows that for In0.15Ga0.85As/GaAs, the observed two transitions are consistent with either type I or type II alignment of the light hole band for band offset ratios within the accepted range. In the case of In0.15Ga0.85As/Al0.15Ga0.85As, however, our results clearly indicate type II alignment for the light hole band. We derive the band offset ratio Q, defined here as Q = δEc/δEg where δEc is the conduction band offset and δEg is the bandgap difference between the quantum well and the barrier in the presence of strain, for the In0.15Ga0.85As/Al0.15Ga0.85As system to be Q = 0.83 and discuss it in the context of the common anion rule.  相似文献   

12.
采用室温Raman散射和低温光致发光(PL)谱,对以TMG,固体As和固体In作为分子束源的MOMBE法生长的GaAs/In_xGa_(1-x)As(x=0.3)单层异质结构和多量子阱结构中InGaAs应变层的临界厚度进行了实验研究。由应变引起的Raman散射峰位移,以及PL谱峰位置与应变和无应变状态下一维有限深势阱跃迁能量计算结果的比较可见,在In组分含量x=0.3的情况下,临界厚度H_c≤5nm,小于能量平衡理论的结果,而与力学平衡模型的理论值相近。  相似文献   

13.
GaInP/GaAs and AlInP/GaAs heterojunction bipolar transistor (HBT) structures were grown by low pressure metalorganic vapor phase epitaxy and annealed at various temperatures up to 675°C for 15 min. Subsequent comparisons with HBTs fabricated on both annealed and unannealed control samples showed no effects for annealing up to and including 575°C, but significant changes in the electrical characteristics were observed at an annealing temperature of 675°C. For the GaInP/GaAs devices, the base current increased by a significant amount, reducing the gain and increasing the base current ideality factor from 1.07 to 1.9. Photoluminescence and electrical measurements on the structures indicated that both the emitter and base were affected by an increase in the recombination times in those regions. These effects were attributed to an out-diffusion of hydrogen from the base during annealing. The emitter of the AlInP/GaAs HBT was affected less by the hydrogen diffusion because of the larger bandgap. These observations have important implications for device performance dependence on the details of the temperature/time profile subsequent to the base growth.  相似文献   

14.
The effective band gap energy of InxGa1−xAs/GaAs strained quantum wells (QWs) is investigated by photoluminescence spectroscopy (PL) in the range 12–295 K. The temperature dependence of the band gap energy of strained QWs correlates well with that of bulk InxGa1−xAs of similar composition. Deviations from the band gap variation of bulk material at low temperatures (12–90 K) are interpreted in terms of exciton localization. The differences ΔE(12 K) between the measured PL peak energies and the expected transition energies at 12 K (obtained by simulating the measured temperature dependence of the PL peak positions by the well-known Varshni relation) are suggested to be closely related to the Stokes shifts that often exist between PL and PL excitation spectra of QWs. A linear relation is found between the PL full-width at half-maximum measured at 12 K and ΔE for a range of QWs prepared under different growth conditions. Excitonic recombination is inferred to be dominant in the PL transitions at the highest temperatures investigated—even at room temperature.  相似文献   

15.
讨论了GaInAs/GaAs应变量子阱结构的应变效应 ,给出了量子阱层的临界厚度随In组份的变化关系。由克龙尼克 -潘纳模型计算了GaInAs/GaAs应变量子阱的量子化能级 ,给出了cl -hhl跃迁对应的发射波长随阱宽和In组份的变化关系曲线 ,并与实验测量的GaInAs/GaAs量子阱的发射波长进行了比较 ,基本一致。与此同时 ,对GaInAs/GaAs应变量子阱向长波长方向的发展也进行了计算分析 ,最后计算研究了应变量子阱中价带子能级及态密度的色散关系  相似文献   

16.
Coupled quantum dot-pairs were fabricated by growing InP self-assembled islands as stressors on InGaAs/GaAs double quantum wells. State filling in the photoluminescence spectra was used to resolve the quantum states in the coupled dots. The total strain field below the stressor decays exponentially with a penetration depth of about 25 nm, within which a dot-pair can be fabricated. Strong coupling is observed at a barrier width less than 4 nm separating the dot-pair. By increasing the indium composition in the lower well in order to match its dot level with one in the upper dot with identical quantum numbers, resonant coupling between the electron states with identical quantum numbers in the two dots can be achieved. Decoupling of the hole states and exchange of the electron bonding states from dominating the upper dot to the lower one are clearly resolved from the state energies and their spacings.  相似文献   

17.
带电粒子辐射对GaAs/AlGaAs多量子阱光学性质的影响   总被引:2,自引:0,他引:2  
利用光荧光谱研究了带电粒子辐照对 Ga As/Al Ga As多量子阱光学性质的影响。用能量为 1 Me V、注量为 1 0 1 3~ 1 0 1 6 /cm2 的电子辐照 ,模拟太空环境下范艾仑带对多量子阱的辐射。辐射后在 45 0℃真空环境下退火 5分钟 ,测量了辐照前后材料的荧光谱。发现量子阱特征峰 772 nm(E=1 .61 e V)辐照后峰位不变 ,峰高有所降低 ,但退火后峰高有所恢复 ,仍比辐照前要低 ;注量为 1 0 1 6 /cm2 的样品中 Ga As的 D0 ~ A0 对复合发光峰 83 2nm(E=1 .49e V)消失。对此结果进行了讨论 ,并与质子辐照的情况作了比较。  相似文献   

18.
Results of room-temperature photoreflectance measurements on three GaAs/Al0.33Ga0.67As multiquantum well (MQW) structures with three different widths of wells and on two GaAs/Al0.33Ga0.67As high-electron-mobility transistor (HEMT) structures are presented. Energy-gap-related transitions in GaAs and AlGaAs were observed. The Al content in AlGaAs was determined. MQW transition energies were determined using the first derivative of a Gaussian profile of the measured resonances. In order to identify the transitions in the MQS, the experimentally observed energies were compared with results of the envelope function calculation method for a rectangular quantum well. The Franz–Keldysh oscillation (FKO) model was also used to determine the built-in electric field in various parts of the investigated structures. The values of the electric fields allow us to hypothesise about the origin of these fields. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Experimental results concerning the steady-state photoluminescence (PL) studies in n and p modulation doped and undoped GaInNAs/GaAs quantum wells are presented. The effects of modulation, type of doping and nitrogen concentration on the PL and the temperature dependence of the band gap, carrier localization and non-radiative recombination are investigated. Increasing the nitrogen composition decreases energy band gap as expected. The n-type modulation doping eliminates most of the defect-related effects and blue shifts the energy band gap. However, the p-type doping gives rise to additional features in the PL spectra and red shifts energy band gap further compared to the n-type-doped material.  相似文献   

20.
GaxAsyP1−y lattice matched to GaAs has been grown by low pressure metalorganic phase vapor epitaxy over the entire compositional range. At TG = 670°C broad peaks of low intensity are observed in the 10K photoluminescence for y = 0.2–0.4 due to the predicted miscibility gap in this compositional region. An increase in growth temperature leads to a smaller miscibility gap. The band gap as well as the morphology show a strong dependence on substrate misorientation. The smoothest GalnAsP surfaces are obtained on exact oriented substrates. For the ternary GalnP the surface roughness is correlated to the degree of ordering in the temperature range of 600 to 750°C. The smallest band gap together with the smoothest surface is obtained on (100) 2° off to (111)B. Ordering effects are also observed in the quaternary GalnAsP. Broad-area lasers processed from the grown layers show high slope efficiency (0.9 W/A) and low internal losses (<3 cm−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号