首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dye sensitised photoelectrochemical (PEC) cells based on Cu/p-CuSCN/LB films have been studied with mixed Langmuir Blodgett (LB) films as the dye layer. The effects of mixed layers were investigated in detail by observing the changes of optical absorption and photocurrent in a PEC cell configuration. Enhancements in both optical absorption and photocurrent were found when a mixture of octadecyl methylviolet–C18 (M–C18) and dioctadecyl rhodamine (C18–R–C18) were deposited using the LB technique on p-CuSCN wide band gap semiconductor. The maximum photocurrent quantum efficiency of the PEC cell reached ≈36% in KI (10−2 M)+I2 (10−4 M) electrolyte solution when mixed LB films were used as the dye layer. Photocurrent enhancement is believed to be the enhancement of light absorption of the dye layers due to the interlocking of M–C18 between the double C18 chains of rhodamine.  相似文献   

2.
Surface states on p-CuSCN are sensitized by aggregated crystal violet in addition to the cathodic sensitization process between semiconductor valence band and the excited monomeric dye molecules. Formation of surface states on bare p-CuSCN is confirmed by experimental results of photocurrent measurements, diffuse reflectance spectra and photoluminescence measurements. Photocurrent quantum efficiency obtained for the aggregated dyes sensitized the surface is 25% at λ=460 nm, and 14% for the monomeric dyes at λ=580 nm. From the variation of photocurrent quantum efficiency with surface concentration of crystal violet at various biased electrode potentials and diffuse reflectance spectra of dye coated p-CuSCN, it is found that the appearance of the sharp photocurrent quantum efficiency peak (λ=460 nm) is due to the sensitization process with the aggregated dye and that of the broad photocurrent quantum efficiency peak (λ=580 nm) is due to the sensitization process with the monomeric dye.  相似文献   

3.
The photoelectrochemical behaviours of dye-sensitized nanoporous TiO2 solar cells are studied under influences of light intensity, redox couple concentration, temperature, different cations and water in the nonaqueous solution. The value of the ideality factor of dyed nanoporous TiO2 film is determined to be 1.08. The diode behaviour of the dyed nanoporous TiO2 film approaches an ideal rectification characteristic. The rate of the reaction of I3 with the electron at the surface of the dyed TiO2 electrode is of first order, like the reduction of I3 at the Pt electrode. By analysis of the relationship of the photovoltage with temperature, the activation energies of the back-reaction for dyed nanoporous TiO2 electrodes in different solutions are obtained. Cations of different kinds and water are found to modify the interfacial properties of the dyed TiO2 electrode. Finally, a quantitative relationship between the short-circuit photocurrent and the light intensity, the I3 concentration is obtained and used to explain the diffusion-controlled photocurrent. The corrected diffusion coefficient of I3 is 5.4–6.2×10−6 cm2/s in a CH3OCH2CN solution.  相似文献   

4.
Al/p-Si/copper phthalocyanine photovoltaic device has been fabricated and characterised by current–voltage and capacitance–voltage measurements. Electrical properties of the device were determined by current–voltage characterizations under dark and illumination conditions. The density distribution of the interface states of the photodiode was found to vary from 8.88×1012 eV−1 cm−2 in Ess-0.54 eV to 4.51×1012 eV−1 cm−2 in Ess-0.61 eV. The device shows a photovoltaic behaviour with a maximum open circuit voltage Voc of 0.16 V and short-circuits current Isc of 0.45 μA under 3500 lux light intensity.  相似文献   

5.
An improvement of electrical properties of pulsed laser crystalllized silicon films was achieved by simple heat treatment with high-pressure H2O vapor. The electrical conductivity of 7.4×1017 cm−3 phosphorus-doped 50-nm-thick pulsed laser crystallized silicon films was markedly increased from 1.6×10−5 S/cm (as crystallized) to 2 S/cm by heat treatment at 270°C for 3 h with 1.25×106 Pa H2O vapor because of reduction of density of defect states localized at grain boundaries. Spin density was reduced from 1.7×1018 cm−3 (as crystallized) to 1.2×1017 cm−3 by heat treatment at 310°C for 3 h with 1.25×106 Pa H2O vapor.  相似文献   

6.
Following the theory used to study the semiconductor/electrolyte interface the differential capacitance of poly(3-methylthiophene) films has been determined from measurements with a lock-in amplifier and by electrochemical impedance spectroscopy (EIS). According to our findings, the best results were obtained by EIS because the space charge capacitance can be separated from the other capacitances. Using Mott–Schottky plots (C−2 vs. E) we obtained the flat band potential Efb=80 mV and the carrier density N=6×1017 cm−3 for the PMeT film in contact with the electrolyte, where dissolved O2 played the role of the electron acceptor. The determined width of the depletion layer is 0.04 μm. We also investigated the photoelectrochemical response of the PMeT film. The plot of the square of the photocurrent vs. potential yields Efb=90 mV, in good agreement with the EIS measurement. The dependence of the photocurrent with the frequency of the incident light shows that PMeT has a long response time (order of ms), compared to an inorganic semiconductor. The band gap was also determined from the photocurrent spectra. The value obtained, for a direct transition is 1.9 eV and is coincident with the value obtained from the absorption spectra.  相似文献   

7.
A thermogalvanic (nonisothermal) cell was constructed for carrying out power conversion efficiency measurements. The design departed from that of traditional thermogalvanic cells which have largely been used only for studies of open-circuit voltage. The cell was used to obtain temperature coefficients, ∂E/∂T, of the open circuit voltage and power conversion efficiencies, Φ, for an interelectrode temperature difference, ΔT, of 20 K, using various redox couples. The values obtained were the following: Cu2+/Cu (1.0 mol dm−3), ∂E/∂T = 785 μV K−1; Zn2+/Zn (1.0 mol dm−3), ∂E/∂T = 790 μV K−1; Fe phen(CN)4/Fe phen(CN)42− (10−3 mol dm−3), ∂E/∂T = 1046 μV K−1, Φ = 4.17 × 10−5%; Fe(CN)63−/Fe(CN)64− (0.07 mol dm−3), ∂E/∂T = 1600 μV K−1, Φ = 1.4 × 10−2%. More detailed studies of the latter system when [Fe(CN)63−] = [Fe(CN)64−] = 0.26 mol dm−3 and [KCl] = 0.80 mol dm−3, using platinum electrodes, with ΔT = 20 K, gave a current density of 1.45 mA cm−2 and a power conversion efficiency, Φ, of 2.8 × 10−2%. This approaches 0.5% of the maximum theoretical efficiency of a Carnot engine operating across the same temperature difference.  相似文献   

8.
This paper reports the high-energy proton irradiation effects on GaAs/Ge space solar cells. The solar cells were irradiated by protons with energy of 5–20 MeV at a fluence ranging from 1×109 to 7×1013 cm−2, and then their electric parameters were measured at AM0. It was shown that the Isc, Voc and Pmax degrade as the fluence increases, respectively, but the degradation rates of Isc, Voc and Pmax decrease as the proton energy increases, and the degradation is relative to proton irradiation-induced defect Ec−0.41 eV in irradiated GaAs/Ge cells.  相似文献   

9.
The spectral response of photoconductive materials applicable to solar cells and photosensors, is commonly characterized using different experimental approaches, such as photocurrent spectra normalized to incident light intensity, photoconductivity spectra measured at constant photon flux, the constant photocurrent method (CPM) [3–5], and the dependence of the photocurrent on the photon flux.In this work, a procedure is proposed, which allows the complementary results of the above mentioned approaches to be gained by analysing several photocurrent spectra, obtained by routine measurements at different illumination levels (Multiple Spectra). This procedure is used for investigation of two a-Si:H samples. The spectra, corresponding to a constant photon flux and a constant photocurrent, as well as the dependencies of the photocurrent on the photon flux at various wavelengths I−Φ spectral map) are derived from the Multiple Spectra and are subsequently used to obtain the following characteristics of the investigated samples: the subbandgap optical absorption spectra; the bulk density of “defect” states; the Urbach tail width; and the power index of the I−Φ)λ dependencies for the bulk and for the interface regions.  相似文献   

10.
Photoanodes of polycrystalline CdSe layers, doped with different concentration of In are investigated. SEM microphotographs show that during the recrystallization process dense and homogenous layers with 50 μm sized crystallites are obtained. In order to obtain maximum performance the effect of In concentration on the photocurrent is analyzed and the optimal value of donor concentration (5×1016cm−3) is established. Applying Gartner-Butler's model for a semiconductor-electrolyte junction, the minority carrier diffusion length L (5.6 × 10−6 cm) and the donor concentration in the depletion layer Nd are determined for samples with optimal donor concentration. Direct preparation of well crystallized and suitably doped layers removes the necessity of sample posttreatment usually performed to increase their efficiency.  相似文献   

11.
High-energy proton irradiation (380 keV and 1 MeV) on the electrical properties of CuInSe2 (CIS) thin films has been investigated. The samples were epitaxially grown on GaAs (0 0 1) substrates by Radio Frequency sputtering. As the proton fluence exceeded 1×1013 cm−2, the carrier concentration and mobility of the CIS thin films were decreased. The carrier removal rate with proton fluence was estimated to be about 1000 cm−1. The electrical properties of CIS thin films before and after irradiation were studied between 80 and 300 K. From the temperature dependence of the carrier concentration in CIS thin films, we found ND=9.5×1016 cm−3, NA=3.7×1016 cm−3 and ED=21 meV from the fitting to the experimental data on the basis of the charge balance equation. After irradiation, a defect level was created, and NT=1×1017 cm−3 for a fluence of 3×1013 cm−2, NT=5.7×1017 cm−3 for a fluence of 1×1014 cm−2 and ET=95 meV were also obtained from the same fitting. The new defect, which acted as an electron trap, was due to proton irradiation, and the defect density was increased with proton fluence.  相似文献   

12.
Cadmium sulphide and cadmium telluride films have been electrodeposited for n-CdS/p-CdTe solar cells. Cell efficiency varied considerably from 9.5% to 11.5% for each deposition set. The reverse saturation currents of 9.5% and 11.5% cells at 298 K were 25 and 6.7 nA cm−2, respectively. The cells with higher efficiency has a lower number of interface states than the less efficient cells. The 11.5% cell had interface states (NIS) of 3× 1010 cm−2 eV−1 at zero volt bias in dark and when it was illuminated with 35 mW cm−2 light at zero volt bias NIS increased by two orders to 1.2×1012 cm−2 eV−1. At higher frequency the large voltage intercept of the Mott-Schottky plot indicates the existence of the near intrinsic layer of the polycrystalline heterojunction.  相似文献   

13.
A polymer gel electrolyte composed of a poly(ethylene oxide) derivative, poly(ethylene oxide-co-2-(2-methoxyethoxy) ethyl glycidyl ether), mixed with gamma-butyrolactone (GBL), LiI and I2 is employed in dye sensitized solar cells (DSSC). The electrolyte is characterized by conductivity experiments, Raman spectroscopy and thermal analysis. The influence of the electrolyte composition on the kinetics of DSSC is also investigated by transient absorption spectroscopy (TAS). The electrolyte containing 70 wt.% of GBL and 20 wt.% of LiI presents the highest conductivity (1.9 × 10−3 S cm−1). An efficiency of 4.4% is achieved using this composition. The increase in ISC as a function of GBL can be attributed an increase in the mobility of the iodide (polyiodide) species. The increase in the yield of the intermediate species, I2, originating in the regeneration reaction, is confirmed by TAS. However, the charge recombination process is faster at this composition and a decrease in the Voc is observed. Photovoltage decay experiments confirm an acceleration in charge recombination for the DSSC assembled with the electrolyte containing more GBL. Raman investigations show that in this electrolyte the I5/I3 ratio is higher. Theoretical calculations also indicate that the I5 species is a better electron acceptor.  相似文献   

14.
A remarkable stability in the sharp photo-current peak at 570 nm was found when p-CuSCN semiconductor photocathode was sensitized with double-dye LB films of rhodamine-C18 (R-C18) monolayers and methylviolet-C18 (M-C18) monolayers. At first, M-C18 four monolayers were deposited on p-CuSCN and then, R-C18 four monolayers were deposited on M-C18 monolayers to make an molecular arrangement on the semiconductor (LB-(R-C18(4)/M-C18(4))/p-CuSCN). Such a photo-cathode exhibited a remarkable stability of steady-state photo-current in (10−2 M) KI+(10−4 M) I2 aqueous solution of pH=6.5, where the quantum efficiency reached was 45%, as estimated by correcting the dye absorption in the sharp photo-current peak at 570 nm. When four monolayers of M-C18 and four monolayers of R-C18 were separated with an arachidic acid LB films, sharp photo-current peak and its stability gradually decreased. This remarkable stability may be due to an efficient energy transfer process and an efficient charge separation caused by a strong interaction between the parallel electron-vibration planes of both M-C18 and R-C18 molecules.  相似文献   

15.
A ZnTe/polymer junction has been fabricated and the photovoltaic properties studied. The polymer is a blend of 50 wt% chitosan and 50 wt% polyethylene oxide (PEO). The polymer blend was complexed with ammonium iodide (NH4I) and some iodine crystals were added to the polymer–NH4I solution to provide the I/I3− redox couple. The ionic conductivity of the polymer electrolyte is 4.32×10−6 S cm−1 at room temperature. ZnTe was electrodeposited on ITO conducting glass. The polymer film was sandwiched between the ZnTe semiconductor and an ITO glass to form a ZnTe/polymer electrolyte/ITO photovoltaic cell. The open circuit voltage (Voc) of the fabricated cells ranges between 300 and 400 mV and the short circuit current between 2 and 5 μA.  相似文献   

16.
The efficiency of dye sensitized solar cell depends on the number of factors such as impedance due to anions in the electrolytes, oxidation–reduction process of anions and size of cations of the electrolyte. This paper reports the effect of electrolytes on the photovoltaic performance of hybrid dye sensitized ZnO solar cells based on Eosin Y dye. The size of the cations has been varied by choosing different electrolytes such as LiBr+Br2, LiI+I2, tetrapropylammonium iodide +I2 in mixed solvent of acetronitrile and ethylene carbonate. The impedance of anions has been determined by electrochemical impedance spectra. It is observed that Br/Br3 offers high impedance as compared to I/I3 couple. The oxidation–reduction reactions of electrolytes are measured by linear sweep voltammogram. It is found that Br/Br3 is more suitable than an I/I3 couple in dye sensitized solar cell (DSSC) in terms of higher open-circuit photovoltage production and higher overall energy conversion efficiency. This is attributed to more positive potential of the dye sensitizer than that of Br/Br3. The gain in Voc was due to the enlarged energy level difference between the redox potential of the electrolyte and the Fermi level (Ef) of ZnO and the suppressed charge recombination as well.  相似文献   

17.
The charge transport in nanoporous ZnO was studied by laser flash induced photocurrent transients. The results are discussed using a diffusion model and compared with previous results on TiO2. The charge transport was highly dependent on the potential giving apparent diffusion coefficients for the electron ranging from 1×10−4 to 1×10−6 cm2/s with an applied bias of +100 and +300 mV vs. Ag/AgCl in ethanol, respectively. The electrolyte was 0.5 M LiClO4 in ethanol. The potential dependence was much more pronounced for ZnO than for TiO2. The charge transport was also dependent on the electrolyte giving a linear dependence between the conductivity of the electrolyte and the apparent electronic diffusion coefficient. The dependence of the light intensity was also studied. Intensity-dependent losses were observed.  相似文献   

18.
Photovoltaic devices were assembled using a conducting polymer; poly (3-thiophenemalonic acid) sensitized TiO2 electrodes and an electrolyte containing I3/I redox couple. This cell exhibited a short-circuit photocurrent (Jsc) of 6.65 mA cm−2, an open circuit voltage (Voc) of 355 mV and an efficiency of 1.5% under the illumination of 100 mW cm−2 (AM 1.5). Addition of an ionic liquid, 1-methyl 3-n-hexylimidazolium iodide, into the electrolyte led to an improvement in the cell performances, achieving an overall efficiency of 1.8% under the same illumination. The average cell characteristics of the later devices are , with a fill factor of 0.65.  相似文献   

19.
CdS/CdTe solar cells have been prepared by periodic pulse electrodepositionmethod. 10.8% efficient cell was made with open circuit voltage (Voc)≈753mV, short-circuit current (Jsc)≈23.6 mA/cm2 and fill factor (FF)≈0.61. Current-voltage-temperature measurments showed the variation of ideality factor (A) from 1.88 at 344 K to 4.49 at 202 K whereas voltage factor (α) was almost constant above 276 K. The junction transport is possibly dominated by a tunneling mechanism. Capacitance measurements gave the value of diffusion potential as 1.2 eV, ionized charged density as 5.9 × 1015 cm−3 and number of interface states (NIS) as 2.8 × 1011 cm−2 eV−1 at zero volt bias. Measurements of open circuit voltage (Voc) with temperature gave the value of barrier height as 1.42 eV.  相似文献   

20.
The ZnSe/CuGaSe2 heterojunctions were fabricated by flash evaporation technique of CuGaSe2 onto the (110) surface of ZnSe crystals. CuGaSe2 layers had thickness 2–4 μm and showed a hole concentration up to (1.5–18.0)×1018 cm−3 and mobility μ4–24 cm2 V−1 s−1 at 300 K. The charge carrier concentration in ZnSe crystals at 300 K was n=5.6×1016 cm−3 and their mobility μ=300 cm2 V−1 s−1. The investigated ZnSe/CuGaSe2 heterojunctions have at the interface an intermediate layer with a thickness of 450–750 Å and a linear graded band gap as well as an i-ZnSe compensated layer with a thickness of 1–2 μm and resistivity ρ108–109 Ω cm. The i-ZnSe layer is highly compensated due to the presence of Cu acceptor impurities. In this layer the Fermi level position EcF0690 meV and a trap level position EtF017 meV were determined. The total trap concentration in the i-ZnSe layer is Nt5×1014 cm−3. The mean free path of excited charge carriers in the graded band gap region was calculated as λ55 Å. On the basis of experimental data analysis of electrophysical properties of both ZnSe/CuGaSe2 heterojunctions and constituent materials the energetic band diagram of the investigated heterostructures is proposed. The current transport mechanism through ZnSe/CuGaSe2 heterojunctions is consequently elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号