首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
花生壳纳米纤维素的制备与表征   总被引:1,自引:0,他引:1       下载免费PDF全文
本文以花生壳为原料,在氢氧化钠碱解和亚氯酸钠漂白预处理基础上,通过硫酸水解方法制备花生壳纳米纤维素。采用扫描电镜、透射电镜、红外光谱、X-射线衍射和热失重分析对花生壳纳米纤维素的表征进行研究。结果表明,通过碱解和漂白处理,花生壳半纤维素和木质素被大量去除,花生壳纤维素含量由43.84%增加到86.56%,纤维素直径为10~30μm;花生壳纳米纤维素呈棒状结构,长度为90~210nm,直径为5~25nm;花生壳纳米纤维素制备过程中纤维素结构并未遭到破坏;结晶度随制备过程逐渐增高,花生壳纳米纤维素结晶度为74.71%,呈典型的纤维素I型晶型;花生壳纳米纤维素的起始热分解温度较低,当温度达到500℃时,花生壳纳米纤维素的残余率大于30%。所制备的花生壳纳米纤维素有望在可降解复合材料中得到应用。  相似文献   

2.
以柚皮纤维素为原料,采用硫酸酸解法制备柚皮纳米微晶纤维素,对纳米微晶纤维素的形貌、结晶结构进行表征分析,以复合膜表面形貌、力学性能、水蒸气透过率和透光率为指标,研究不同添加量柚皮纳米微晶纤维素对羧甲基淀粉膜性能的影响。研究发现:柚皮纳米微晶纤维素为长度为60~180 nm,直径为3~15 nm的棒状晶体;X-射线衍射表明其仍为纤维素I型结构;复合膜电镜图光滑平整;纳米微晶纤维素添加量为5%时,复合膜的拉伸强度较原膜提高最大(52.22%);而随着纳米微晶纤维素的添加,复合膜的断裂伸长率呈下降趋势;当添加量为7%时,复合膜水蒸气透过率降低最大(23%);纳米微晶纤维素的添加量大于3%时显著降低复合膜的透光率,但未改变原膜在不同波长下的透光率。因此,添加柚皮纳米微晶纤维素能有效改善复合膜的性能,制备出综合性能优良的羧甲基淀粉复合膜。  相似文献   

3.
为改善聚乳酸(PLA)薄膜的力学及阻隔性能,采用纳米纤维素(NCC)对其进行改性。以微晶纤维素(MCC)为原料,用硫酸法制备NCC,进而制备乙酰化纳米纤维素(ANCC),然后将PLA与ANCC按不同比例混合后制备复合薄膜。采用透射电子显微镜(TEM)、傅里叶红外光谱仪(FTIR)、扫描电子显微镜(SEM)对其微观结构和形态进行观测。采用拉伸仪和氧气透过率仪对其力学和气体阻隔性能进行分析。结果表明,使用酸法制备的纳米纤维素长度为100~200 nm,直径范围为10~20 nm。乙酰化处理对纳米纤维素的外观形态没有明显改变。与纯聚乳酸膜相比,ANCC添加量为1%时制备的复合薄膜的拉伸强度增加了29.09%,进一步增加ANCC含量则会导致复合薄膜力学性能下降。添加ANCC有效降低了复合薄膜的氧气透过量,ANCC添加量为0.5%时,薄膜的氧气透过率与纯PLA薄膜相比降低42%。添加ANCC对于薄膜的透光率和雾度没有明显影响。  相似文献   

4.
以绿豆皮纤维素为原料,采用硫酸水解法制备绿豆皮纳米纤维素并将其应用到浓缩乳清蛋白可食膜中,研究了绿豆皮纳米纤维素的微观形貌、结晶结构以及绿豆皮纳米纤维素添加量对浓缩乳清蛋白膜抗拉强度、断裂伸长率、氧气透过率、水蒸气透过系数、透光率及微观结构的影响。结果表明:绿豆皮纳米纤维素为棒状结构,长度约为100~200 nm,直径约为10~20 nm,且保持典型的纤维素Ⅰ型结构,结晶度较高;绿豆皮纳米纤维素与浓缩乳清蛋白有很好的相容性;当绿豆皮纳米纤维素添加量为1%时,膜的水蒸气透过系数达到最小值,为2.67×10-13 g/(cm·s·Pa);膜的透光率达到最大值,为39.31%;此时膜表面较为平整均匀。当绿豆皮纳米纤维素添加量为2%时,膜的抗拉强度最大为1.41 MPa,此时断裂伸长率为139.8%;膜的氧气透过率达到最小值,为1.8×10-5cm3/(m2·d·Pa)。绿豆皮纳米纤维素的添加能够有效的提高浓缩乳清蛋白膜的性能。  相似文献   

5.
不同尺寸纳米结晶纤维素对纸张性能的影响   总被引:1,自引:0,他引:1  
通过向纸张中添加不同条件制备的纳米结晶纤维素,研究添加纳米结晶纤维素对纸张性能的影响。结果如下:以MCC为原料,62%的硫酸,酸浆比8.5ml/g,反应温度45℃,反应时间100min,制备出的NCC加入到纸浆(40%针叶木浆和60%阔叶木浆)中,对纸张的增强效果最好。与空白纸张对比,纸张的抗张指数提高了34.1%,撕裂指数提高了28.2%,耐折度提高了67.3%。  相似文献   

6.
新型抗菌丝绸壁纸制备及其性能检测   总被引:1,自引:0,他引:1  
采用硫酸法从微晶纤维素中制得纤维素纳米晶,并结合简单沉淀法制得纳米氧化锌/纤维素纳米晶复合粒子。通过简单热轧工艺将复合粒子有机嵌入基纸和丝绸面料之间,制备出抗菌丝绸壁纸。通过对复合粒子与抗菌丝绸壁纸的结构表征与性能测试。实验结果表明:平均粒径为37nm的氧化锌负载在纤维素纳米晶骨架上;同时在383nm处存在紫外光吸收峰,进一步证实复合粒子中含有纳米氧化锌,且成功负载在丝绸壁纸表面;所制备的抗菌丝绸壁纸具有优良的抗菌效果及耐洗涤性能,经50次循环洗涤后,其对大肠杆菌和金黄葡萄球菌的抑菌率均可高达99%以上。  相似文献   

7.
海藻酸钙/纳米晶纤维素复合膜的制备及性能研究   总被引:1,自引:0,他引:1  
郭正旭  邱思  卢晓黎 《食品工业科技》2012,33(24):174-176,179
采用硫酸水解脱脂棉制备纳米晶纤维素,并以浇注法制备海藻酸钙/纳米晶纤维素复合膜。通过对复合膜的机械性能、吸水性能、透湿性能和光学性能进行检测,结果表明,以此法制得的纳米晶纤维素呈棒状,直径20~40nm,长径比约为7。将纳米晶纤维素添加入膜中,复合膜的抗拉强度和断裂伸长率显著增大,而吸水性、透湿性和透光率显著减小。  相似文献   

8.
花生壳纳米纤维素的制备及其对淀粉膜性能的影响   总被引:2,自引:0,他引:2  
以花生壳纤维素为原料,采用酸水解法制备花生壳纳米纤维素,对花生壳纳米纤维素的形貌,结晶结构及其对淀粉膜性能的影响进行研究。结果表明,花生壳纳米纤维素为棒状结构,长度为150 nm左右,直径为10~15 nm;X-射线衍射表明其仍具有纤维素的晶型,结晶度有所提高;添加花生壳纳米纤维素可以有效提高氧化酯化木薯淀粉膜的拉伸强度、水溶时间和热稳定性,降低水蒸气透过系数,添加6%花生壳纳米纤维素制备的复合膜结构紧密、光滑平整。  相似文献   

9.
以漂白混合竹浆板为原料,采用碱预处理竹浆后,再采用磁力搅拌辅助硫酸水解并结合超声波的方法制备纳米纤维素晶体(NCC),竹浆∶硫酸为1∶31(固液比),探讨硫酸浓度、硫酸水解时间和反应温度对竹浆NCC制备的影响;并利用扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)和热重分析仪(TGA)对制得的竹浆NCC进行表征。结果表明,磁力搅拌辅助硫酸水解并结合超声波方法制备竹浆NCC的最佳工艺条件为:硫酸浓度65%、反应温度45℃、处理时间45 min,该条件下制得的竹浆NCC粒径小且分布均匀,其结晶结构具有从纤维素Ⅱ型转变成纤维素IV型的趋势;与竹浆纤维素相比,竹浆NCC吸水能力增强,可及度增加,热稳定性提高。  相似文献   

10.
通过硫酸水解和超声结合的方法,把微晶纤维素制备成纳米纤维素,采用56%的硫酸把微晶纤维素在40℃水浴水解1h,再用80%的功率超声3h,制得的纳米纤维素的固含量为1.70%,粒径分布在70nm-1500nm之间,电镜照片下呈棒状。  相似文献   

11.
以废纸为原料,采用传统硫酸法制备纤维素纳米晶(CNCs),并优化其工艺条件;采用傅里叶变换红外光谱仪(FT-IR)、X射线衍射仪(XRD)、热重分析仪(TGA)、透射电子显微镜(TEM)及扫描电子显微镜(SEM)研究了废纸基纤维素纳米晶(SCNCs)的结构与性质。在最佳工艺条件(硫酸浓度60 wt%、水解温度50℃、水解时间90 min)下,SCNCs的得率为41.2%,呈典型的纤维素Ⅰ型结构,结晶度为77.6%;与原料相比,几乎不存在杂峰;SCNCs为棒状结构,长约142.87 nm,直径约9.67 nm。探讨了回收硫酸溶液再次用于制备CNCs;结果表明,首次回收硫酸制备的废纸基纤维素纳米晶(SCNCsH)得率为39.9%,结晶度为78.6%。  相似文献   

12.
以姜渣纤维素为原材料,通过超声波辅助酸解的方法对姜渣纤维素进行纳米化处理,得到纳米姜渣纤维素。通过对超声波功率、硫酸浓度、酸解温度、酸解时间4个影响因素进行单因素试验、正交试验,确定其最佳的工艺条件,并通过透射电镜对其表观结构进行进一步分析。研究结果表明,制备纳米姜渣纤维素的最佳工艺参数为超声波功率135 W、硫酸浓度60%、酸解温度50℃、酸解时间90 min,在此条件下纳米姜渣纤维素的产率为32.97%,其表观为针状,细小均匀,直径(5~10)nm,长度500 nm~1μm,达到纳米纤维素尺寸级别,这为纳米纤维素的深入研究提供理论参考。  相似文献   

13.
以农作物废弃物玉米叶为原料,首先去除玉米叶的木质素和半纤维素,获得纯化纤维素,然后通过硫酸水解-超声法提取玉米叶纳米纤维素,并运用XRD、FT-IR、TG和TEM表征纳米纤维素的微观形貌、结构以及热稳定性。结果表明,制备玉米叶纳米纤维素的最佳水解温度60℃,水解时间2 h,硫酸质量分数60%;玉米叶纳米纤维素呈棒状,直径约8 nm,长度150~200 nm,属纤维素I型,结晶度66.5%,起始热解温度为243.43℃,其可作为优良的增强材料应用于塑料加工或纸品生产。  相似文献   

14.
以小麦秸秆纤维素为原料,通过硫酸水解辅助高压均质的方法,分层制备小麦秸秆纳米纤维素(CNC);分别采用马尔文纳米粒度分析仪、透射电子显微镜、原子力显微镜、傅里叶变换红外光谱仪、X射线衍射仪和热重分析仪对分层制备的小麦秸秆CNC进行表征分析。结果表明,经硫酸水解预处理、离心收集得到的上层清液纳米纤维素(CNC-SL)为纳米纤维素晶须,与原料相比,其结晶度由48.61%提高至71.87%;硫酸水解预处理、离心收集的残余纤维固体(CNC-S)经8次均质处理制备的纳米纤维素(CNC-SP),其粒径分布在100~200 nm,直径约为15 nm,为高结晶度的短棒状纳米纤维素晶须,晶型为Iβ型。与原料相比,CNC-SL和CNC-SP的热稳定性均下降。与硫酸水解法制备CNC相比,硫酸水解辅助高压均质法制备的CNC得率较高;与机械均质化方法相比,此方法所需均质次数明显减少。  相似文献   

15.
为实现纳米纤维素衍生物的绿色高效制备,以过硫酸铵为氧化剂,基于机械力化学作用,在微波-水热条件下氧化降解竹浆粕得到羧基化纳米纤维素(CNC),然后与二乙烯三胺发生缩合反应,实现水相中氨基化纳米纤维素(ACNC)的一锅法合成,并对其性能进行研究。结果表明:ACNC呈棒状,直径为10~40 nm,长度为50~300 nm, 氨基的接枝率为6.29%;ACNC的晶型并未发生改变,仍为纤维素Ⅰ型,结晶度由竹浆粕的59%增加到79%;ACNC的热稳定性较竹浆粕并未显著下降,但较CNC显著提高,说明CNC表面接枝氨基后热稳定性能得到改善;该制备方法绿色高效,得到的纤维素衍生物有望在生物固化和物理性能增强方面发挥作用。  相似文献   

16.
《粮食与油脂》2016,(11):6-9
透射电子显微镜图表明,纳米纤维素为棒状,直径小于10 nm,长度在100~500 nm。快速黏度分析仪(RVA)分析表明,纳米纤维素添加量为5%~20%时,普通玉米淀粉的糊化温度无明显改变,峰值黏度、谷值黏度、末值黏度和衰减值均随着纳米纤维素添加量的增加而升高。研究结果表明:普通玉米淀粉糊具有假塑性流体的特征,属"剪切变稀"体系。纳米纤维素添加量增加,普通玉米淀粉糊的表观黏度增加,体系稠度增大,淀粉糊的流动性降低。纳米纤维素可改变普通玉米淀粉胶的三维网络结构,使得体系被破坏后的回复力减弱。  相似文献   

17.
以茶梗为原料,采用硫酸水解法制备纤维素纳米晶体(CNC),并运用响应面分析法对CNC制备工艺(即硫酸质量分数、反应温度和反应时间)进行优化;采用透射电子显微镜(TEM)、热重分析仪(TG)和X射线衍射仪(XRD)对CNC的形貌、热力学性能、结晶结构和结晶性能进行表征。结果表明,制备茶梗CNC的最佳反应时间125 min,温度45℃,硫酸质量分数为63%;在最佳工艺条件下获得的CNC的得率为49.9%,其为棒状,直径4~8 nm,长度100~250 nm,属纤维素I型;与茶梗纤维相比,茶梗CNC结晶度提高,热稳定性降低。  相似文献   

18.
为研究纳米纤维素对海藻酸钠可食用膜的影响,首先通过改变纳米纤维素添加量制得海藻酸钠复合膜液,研究成膜溶液静态流变性能,随后在不同干燥温度下制得复合膜,研究其透光率、水溶性、水蒸气透过率、氧气透过率及红外光谱特性。结果表明:所有膜液均为假塑性流体,且随着纳米纤维素添加量增加,膜液的假塑性程度升高,黏度变大。在相同干燥温度下,随着纳米纤维素含量增加,复合膜的透光率降低,水溶时间变长;50℃干燥制得的膜阻隔性能最佳,纳米纤维素添加量为15%的复合膜比纯海藻酸钠膜的水蒸气透过率下降了28.7%,添加量为5%的复合膜比纯海藻酸钠膜的氧气透过率下降了22.1%;红外光谱表征发现,在加入纳米纤维素后,复合膜官能团吸收峰发生位移,这可能是两者之间发生了氢键相互作用,从而改善了海藻酸钠膜的阻隔性能。  相似文献   

19.
用亚氯酸钠和17.5%氢氧化钠对龙须草进行预处理,再以硫酸水解法制备龙须草纳米微晶,采用正交试验优化酸水解条件,并利用场发射扫描电镜、动态光散射、红外光谱、X射线衍射和热重分析对纳米微晶进行表征。研究表明,酸水解条件为硫酸浓度59%,温度45℃,时间2 h,纳米微晶长度、粒径和长径比分别为171.1 nm,17.2 nm和10.3;纳米微晶的纤维素存在纤维素Ⅰ和纤维素Ⅱ两种晶型,其结晶指数为78%;纳米微晶的热裂解起始温度和最大热重损失温度分别为178℃和224.4℃,700℃热降解的残余率为30.6%。  相似文献   

20.
为了提高甘薯加工副产品的高值化利用,以甘薯渣纤维素为原料,应用超声波辅助酸法制备纳米薯渣纤维素。通过对超声波功率、酸体积分数、酸解温度和酸解时间4个影响因素进行单因素及正交试验,获得了纳米薯渣纤维素的最佳制备条件,并通过透射电镜和X-射线衍射对其进行进一步的分析。结果表明:纳米薯渣纤维素制备的最佳工艺参数为超声波功率120 W、酸体积分数65%、酸解温度55℃、酸解时间120 min,此条件下纳米薯渣纤维素的产率为42.85%;纳米薯渣纤维素的形态表现为不规则球状,粒径在20~40 nm范围内,并且其仍具有纤维素的晶型,结晶度有明显的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号