首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study varied stimulus frequency and recorded distortion product otoacoustic emissions (DPOAEs) in human newborns and adults. Because of outer and middle ear acoustics, the same auditory input resulted in higher newborn stimulus sound pressure levels across a broad frequency range in the occluded outer ear canal. Noise levels in the canal were 5-15 dB lower for adults at frequencies less than about 3 kHz. The 2 f1-f2 DPOAE was the most reliably recorded DPOAE except at the lowest frequencies assessed. At the lowest frequencies the 2 f2-f1 DPOAE was more frequently recorded than any other DPOAE. There were no striking developmental differences in the kinds of DPOAEs that were recorded. The amplitudes of consecutively recorded 2 f1-f2 DPOAEs were generally within 1.5 dB of each other for all age groups (slightly better reproducibility for adults than newborns). The phases of consecutively recorded 2 f1-f2 DPOAEs were generally within 15 degrees of each other (often less than 10 and 5 degrees for newborns and adults respectively). At the highest frequencies assessed (f2 = 4.2-9.9 kHz) all subjects had similar amplitude 2 f1-f2 DPOAEs. At lower frequencies adult 2 f1-f2 amplitudes were significantly less than those of newborns. At the lowest frequencies reliably assessed (f2 = 1.5-2.1 kHz) term newborns had significantly larger 2 f1-f2 DPOAEs than preterm newborns. Newborn and adult 2 f1-f2 DPOAE amplitude X f2/f1, functions were quite similar although there were reliable differences. Age related differences in the outer and middle ears may explain some of the differences in DPOAEs that were observed.  相似文献   

2.
Although the influence of the levels and ratios of the primary stimulus on the amplitude of distortion product otoacoustic emissions (DPOAEs) has been studied intensely, the influence of the presence of spontaneous otoacoustic emissions (SOAEs) has been investigated less thoroughly. The present investigation analysed whether the unilateral presence of 58 SOAEs in 43 normal-hearing adults was related to larger DPOAEs in the ear with SOAEs compared to the contralateral ear having no SOAEs. The study was designed such that the only factor that could influence the amplitude of DPOAEs was the presence of SOAEs. Input/output (I/O) functions were collected in response to primary tones that were presented in 5-dB steps from 70 to 40 dB SPL at the frequency of the unilaterally recorded SOAE of each subject. The primary outcome was the demonstration of statistically significant (P < 0.05) larger DPOAEs in ears exhibiting SOAEs than in ears without measurable SOAEs, except at the highest stimulus level of 70 dB SPL. These results suggest that SOAEs play an additive role in the measurement of DPOAEs. The enhancing effect of the unilateral presence of SOAEs on DPOAEs was statistically significant for 65 dB SPL and lower levels of primary tones. The authors speculate that passive cochlear properties begin to participate in the generation of DPOAEs at primary-stimulus levels greater than 65 dB SPL.  相似文献   

3.
The effects of primary tone frequency ratio (f2/f1 ratio) and relative level (L2/L1) on the amplitude of the cubic difference tone (CDT: 2f1-f2) distortion product otoacoustic emissions (DPOAEs) were investigated in adult White Leghorn chickens (Gallus domesticus). In experiment 1, 9 f2/f1 ratios ranging from 1.05 to 1.8 were investigated. Measurements were obtained from both ears of 4 chickens at 7 f1 frequencies ranging from 0.8 to 4.0 kHz. The primary tones were equal in level, and varied from 20 to 80 dB SPL. The mean CDT amplitude increased with increasing primary tone level once the measurement noise floor was exceeded. The input/ output functions assumed one of two shapes: one in which there was a systematic increase in DPOAE amplitude with increasing primary tone level, and the other in which there was a plateau in the input/output function near 65-70 dB SPL. At the highest primary tone level (80 dB SPL), there was a decrease in the CDT amplitude with increasing f2/f1 ratio. At high primary tone levels, the f2/f1 ratio which produced the largest CDT was 1.05 or 1.1, while at lower primary tone levels the largest CDT occurred at f2/f1 ratios of 1.2-1.3. In experiment 2, L2 was held constant at 70 dB SPL, and L1 varied from 50 to 80 dB SPL. For f1 frequencies of 0.8 and 3.2 kHz, there was an increase in the CDT amplitude with increasing L1, followed by an asymptote at higher levels. In contrast, for 1.6 and 2.0 kHz f1 frequencies, the amplitude increased, plateaued and then increased again at higher levels. Informal measurements suggest that spontaneous otoacoustic emissions (SOAEs) are rarely seen in chickens. However, a reliable SOAE was observed in 1 chicken, which could be suppressed by external sounds and anoxia.  相似文献   

4.
Evaluation of cochlear hearing loss by means of transiently evoked otoacoustic emissions is already established in clinical practice. However, accurate prediction of pure-tone thresholds is still questioned and is still regarded as troublesome. Both click- and tone-burst-evoked otoacoustic emissions at several intensity levels were measured and analysed in 157 ears from normally hearing and 432 ears from patients with different degrees of pure sensory hearing loss using the ILO88/92 equipment. Results of otoacoustic emissions (OAE), elicited by clicks and tone-bursts at centre frequencies from 1 to 5 kHz, were analysed using two different statistical methods. Both multivariate discriminant analysis and forward multiple regression analysis were used to determine which OAE variables were most discriminating and best at predicting hearing thresholds. We found that a limited set of variables obtained from both tone-burst and click measurements can accurately predict and categorize hearing loss levels up to a limit of 60 dB HL. We found correct classification scores of pure-tone thresholds between 500 and 4000 Hz up to 100 per cent when using combined click and tone-burst otoacoustic measurements. Prediction of pure-tone thresholds was correct with a maximum estimation error of 10 dB for audiometric octave frequencies between 500 and 4000 Hz. Measurements of multiple tone-bursts OAEs have a significant clinical advantage over the use of clicks alone for clinical applications, and a good classification and prediction of pure-tone thresholds with otoacoustic emissions is possible.  相似文献   

5.
The endocochlear potential (EP) was reversibly decreased in adult gerbils by the intraperitoneal injection of furosemide, while cochlear functioning was monitored by measurement of distortion production otoacoustic emissions (DPE) at a range of stimulus intensities. Stimulus frequencies for DPEs were f1 = 6.8 and f2 = 8 kHz (f2/f1 = 1.18). Emissions monitored in the ear canal and scala media were 2f1-f2, 3f1-2f2, 2f2-f1, and f2-f1. Typically, the EP decreased smoothly, reached a minimum one-half hour after injection, then recovered slowly over several hours. Emissions at 2f1-f2 and 3f1-2f2 at low stimulus levels were particularly vulnerable to the change in EP. These vulnerable emissions showed characteristic trajectories in which the amplitudes changed little with the initial EP decrease, then dropped sharply as the EP continued to decrease. However, the amplitudes then began to recover even before the EP reached minimum, and recovered completely while the EP remained subnormal. The trajectories of the other odd order emissions were similar, but lacked the abrupt decrease. The variation of the even order (f2-f1) component was completely different, but appeared related to the odd order trajectories in a complex fashion. During the initial decrease for the vulnerable components, the decrease in emission amplitude (in dB) was found to be proportional to the square of the change in EP (in mV). The recovery with a subnormal EP was interpreted as an adaptive effect with a time constant of about 15 min.  相似文献   

6.
Distortion product otoacoustic emissions (DPOAEs) were evaluated in 494 normal and 506 cochlear-impaired human ears, to determine whether DPOAEs depend on factors such as background noise, the shape of the pure tone audiogram, sex and aging, and whether a DPOAE test can perform well in distinguishing normal-hearing from hearing-impaired ears. The amplitudes of DPOAEs were measured at the frequency of 2f1-f2 (f1 < f2, f2/f1 = 1.22, f2 at 1, 2 and 4 kHz) using as stimuli two pure tones at level of 70 dB from an ILO92 Otoacoustic Emission Analyzer. The correlation coefficients between the DPOAE level and the auditory threshold decreased as the background noise levels at 1 kHz and 2 kHz increased. Therefore, it appeared that ears with large background noise levels would be inadequate for the study of DPOAEs predicting the hearing state. The sensitivity (normal-hearing ears identified as normal hearing) and the specificity (hearing-impaired ears identified as hearing impaired) at the equal-sensitivity-specificity condition were 80.7-86.7% at 1, 2 and 4 kHz, and the areas under the receiver operating characteristic (ROC) curves, which were used to estimate the test performance, were 0.88 for 1 kHz, 0.91 for 2 kHz and 0.92 for 4 kHz. Since these results suggest that a DPOAE can be used as a reliable technique for objective auditory tests, it is thought that actual values (DPOAE level: 4.3 dB at 1 kHz, 5.0 dB at 2 kHz and 2.9 dB at 4 kHz) of false-positive (hearing-impaired ears identified as normal hearing) rates corresponding to 5% can be used in clinical evaluation to separate normal hearing from hearing-impaired ears. There was, however, a significant age effect at 4 kHz on DPOAEs in the ears with the same pure tone hearing thresholds, and the areas of the ROC curves in subjects ranging from 10 to 29 years old were larger than in subjects over 50 years (1 kHz: 0.88 to 0.94 versus 0.83 to 0.84, 2 kHz: 0.95 versus 0.89, 4 kHz: 0.95 to 0.96 versus 0.88 to 0.89). Therefore, it is thought that age-adjusted norms may be necessary for the accurate interpretation of DPOAE results.  相似文献   

7.
A number of lines of evidence indicate that the human cochlea is fully functional as a mature sound transducer by 6 months of age. However, information about the development of the active cochlear mechanisms and notably the development of outer hair cell (OHC) activity is yet incomplete. Recording and analysis of otoacoustic emissions (OAEs), probably generated by the OHCs of the organ of Corti, have led to a better understanding, in humans, of how sounds are analysed in the cochlea by means of active mechanisms. Evoked OAEs (EOAEs) and spontaneous OAEs (SOAEs), when they can be recorded in full-term and preterm neonates, show different characteristics from those in adults, suggesting that maturation of the peripheral auditory system is incomplete at birth. To learn more about this maturation, using the best-established facts concerning SOAEs in adults, such as their greater prevalence in females and also in right ears, SOAEs were studied in more detail in 81 preterm neonates, from 30 to 40 weeks of conceptional age, all presenting bilateral EOAEs according to objective criteria. The first finding of this study was that SOAEs existed and could be recorded as of 30 weeks of conceptional age in humans. Some SOAE characteristics in preterm neonates, such as prevalence, peak number and acoustic frequencies, showed similarity with full-term neonates. Comparison of other criteria between the two populations, such as greater SOAE prevalence in right ears and higher SOAE peak number in females, suggested that these developmental factors emerge around term in humans. Comparison of SOAE characteristics between male and female preterms suggested that male preterms were less advanced in peripheral auditory development than were female preterms.  相似文献   

8.
The influence of contralateral white noise with levels of 50 and 60 dBnHL on the amplitude of distortion-product otoacoustic emissions (DPOAE) was measured. Thirty ears of normally hearing adults (17 women, 13 men, mean age 26.5 +/- 5.3 years) were examined. Two representative DPOAE frequencies 2f1-f2 = 1342 Hz and 6341 Hz were compared. The lower DPOAE frequency was placed in the frequency region where middle-ear pressure has a strong influence on DPOAE amplitudes, the higher DPOAE frequency respectively in the region where lesser influence is exerted by middle-ear pressure. During the application of contralateral white noise a statistically significant total of 85% of DPOAE amplitudes was reduced, although there was some variation in the individual behaviour of DPOAE amplitudes. In general the higher DPOAE frequency (6341 Hz) was reduced distinctly less than the lower DPOAE frequency (1342 Hz). The reaction of DPOAE amplitude depended closely on the time course of the contralateral stimulus and amplitude reductions were present over 10 minutes without adaptation or fatigue. It is not possible to differentiate between middle-ear or inner-ear mediate effects but the middle ear is at least involved. Based on the presence of those DPOAE amplitude reductions over ten minutes without adaptation or fatigue and the fact that lower frequencies are influenced much more than higher frequencies a synergistic effect--middle-ear and efferent mediated--is suggested.  相似文献   

9.
This study compared the influence of an auditory attention task and of repetitive measures on the peripheral auditory system, using evoked otoacoustic emissions (EOAEs). The experimental task protocol comprised three sessions (pre-control, attention and post-control conditions) with, in each session, six measurements of EOAEs, at intervals of about 60 seconds, while the other ear was receiving two pure tones of 2,500 and 750 Hz, with a probability of appearance of 20% and 80%, respectively. In the contralateral attention condition, the subject had to count the number of the less frequent high pitched sounds. A long duration protocol (20 min for the total experiment) was used in order to examine a possible time-effect on EOAEs. An increase in EOAE amplitude during the second and third sessions, with linear saturation around the last measurements, was observed. While no attention effect could be identified, a time-effect seemed to be present. Possible explanations for the influence of repeated measurements on EOAEs are discussed. Moreover, EOAE amplitudes of subjects presenting spontaneous otoacoustic emissions were compared to those of subjects without SOAEs: significant differences were found, showing the particularity of cochleas emitting SOAEs.  相似文献   

10.
We have measured the changes in transient otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) during and after ototoxic amikacin treatment in an animal (chinchilla) model. TEOAE and DPOAE were recorded from 6 adult chinchillas over a 6-week time course starting just before a 5-day or 7-day treatment period with amikacin sulphate (400 mg/kg/day, i.m.). After final recordings, cochlear morphology was assessed by scanning electron microscopy. Generally, both DPOAE and TEOAE amplitudes change during and after treatment in a systematic fashion. High-frequency components change first, followed by lower-frequency components. We note that there is often a long latency to the onset of changes in otoacoustic emissions (OAE), and that these changes can continue for weeks after treatment. Most importantly we report that when the basal region of the cochlea is damaged in the frequency region above the OAE recording bandwidth (0.6-6 kHz for TEOAE; 1-6.7 kHz for DPOAE), we often find an increase in OAE amplitudes. More specifically, we note that as a cochlear lesion progresses apically, there is often a transient increase in a frequency-specific OAE before it reduces or is lost. Our results suggest that the increase in OAE amplitudes precedes the expression of detectable cochlear pathology.  相似文献   

11.
The aim of this study was to evaluate the reduction in 2f1-f2 distortion product otoacoustic emission (DPOAE) amplitude resulting from prolonged noise exposures. A group of five chinchillas was exposed continuously to an octave-band noise centered at 4.0 kHz for a total of 42 days, 6 days at each of seven exposure levels. Exposure level increased in 8-dB steps from 48 to 96 dB SPL. DPOAE input-output (I/O) functions were measured at octave intervals over a range of primary tone f2 frequencies between 1.2 and 9.6 kHz. Measurements were obtained (1) pre-exposure, (2) during days 3-6 of each 6-day exposure, and (3) 4 weeks after the final exposure. Continuous noise exposure caused a reduction in DPOAE amplitude that was greatest at f2 frequencies within and above (3.4-6.8 kHz) the octave-band noise exposure. For these f2 frequencies, DPOAE amplitudes decreased as exposure level increased up to approximately 72-80 dB SPL; higher exposure levels failed to cause any further reduction in DPOAE amplitude. The noise level at which DPOAE amplitude began to decrease was approximately 50 dB SPL. Above this critical level, DPOAE amplitude decreased 1.3 dB for every dB increase in noise level up to approximately 75 dB SPL.  相似文献   

12.
Emissions evoked by broad-band stimuli, such as clicks, show a 'frequency dispersion' reminiscent of the place-frequency distribution along the cochlea. Analysis of the time-frequency properties of transiently evoked otoacoustic emissions (TEOAEs) is therefore of considerable interest due to their close relation with cochlear mechanisms. In particular, since OAEs in response to click stimuli are expected to evoke a cumulative response from the whole cochlea, the analysis of click-evoked OAEs can yield a global view of cochlear function. Wavelet analysis is performed to obtain time-frequency distributions of click-evoked OAEs at various intensity levels from normal ears. By means of the inverse wavelet transform, the recorded responses are decomposed into elementary components representing the contribution within a narrow frequency band to the cumulative OAE. The relationship between the frequency of the elementary components, latency and level of stimulation is described.  相似文献   

13.
Round window perilymphatic fistulas were surgically created in 20 guinea pigs. Distortion product otoacoustic emissions (DPOAEs) at 2fl - f2 were recorded prior to and immediately following laceration of the round window. The stimuli were equal level sinusoids (f1 < f2) with f2 ranging from 2 to 10 kHz, a fixed f2:f1 ratio of 1.25, and stimulus levels (L2 = L1) ranging from 20 to 80 dB SPL. After an 18-day survival period, emission measurements were repeated, and fluorescein was infused into the cerebrospinal fluid to verify patency or closure of the fistula. Nine animals demonstrated patent fistulas, whereas 11 had closed fistulas. There was a statistically significant reduction in DPOAE amplitude after an acute fistula across all stimulus levels (p < .001). At 18 days the DPOAE amplitudes in animals with healed fistulas could not be differentiated from controls, whereas DPOAE amplitudes in animals with patent fistulas were statistically different from controls (p < .05). The results suggest that evoked otoacoustic emissions may be useful in detecting perilymphatic fistulas.  相似文献   

14.
In order to study the energy dependence of the cochlear amplifier, transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) were recorded in rats during gradual cooling to 27 degrees C and heating to 40 degrees C. In the range 33-39 degrees C, the TEOAEs and DPOAEs were maximal in amplitude and almost insensitive to temperature. However, they were significantly depressed (reversibly) at higher and lower temperatures. Intensity functions were plotted at 37, 27 and 40 degrees C for both types of oto-acoustic emissions. At 37 degrees C intensity functions were nonlinear, with a notch at mid-intensity regions. At 27 degrees C, the magnitudes were depressed more at the lower intensities and threshold elevations were observed. As a result, the intensity functions were more linear and the notch was no longer seen. This result provides further evidence for a more active, energy-dependent component of the otoacoustic emissions at lower intensities for both TEOAEs and DPOAEs. The cooling probably affects the lower intensity otoacoustic emissions by inducing a depression in the endocochlear potential, by reducing the motility of the outer hair cells and by introducing a small conductive hearing loss.  相似文献   

15.
The time course of the medial olivocochlear efferent system has been studied in humans, using the suppressive effect of a contralateral broad-band noise (CBBN) on 2f1-f2 distortion product otoacoustic emissions (DPOAE) amplitude. DPOAE were recorded with F2 at 1.5 kHz, with a temporal resolution of 2.6 s, in the presence and absence of a 40 dB SL continuous CBBN, whose duration ranged between 30 s and 20 min. The CBBN suppressive effect on DPOAE amplitude was greatest from the first 2.6 s, and was sustained for 20 min. At the CBBN offset, when the CBBN duration was > or = 2 min, DPOAE amplitude continued to increase for > 1 min, showing an efferent effect outlasting CBBN stimulation.  相似文献   

16.
Distortion product otoacoustic emissions (DPOAE) offer an alternative to transiently evoked otoacoustic emissions (TEOAE) as an audiological test. The former can be used as a screening technique, and may also provide frequency-specific information about the functional state of the cochlea. We recorded DPOAE in a group of healthy newborns to establish the characteristics of a DPOAE "audiogram" (DP-gram) in this population. The DP-gram can be obtained with characteristics quite similar to those observed in adults, with two sharp peaks of maximum amplitude at F2 frequencies of 2 kHz and 5-6 kHz, and a decline in DPOAE amplitude in midfrequencies. The results confirm the limitations of DPOAE recording for testing parts of the basilar membrane where lower frequencies are coded.  相似文献   

17.
After exposure to a loud, non-traumatic low-frequency tone, auditory thresholds are elevated. Thresholds recover to normal in a non-monotonic manner, decreasing rapidly at first before increasing again, until they finally decrease monotonically towards normal. Although the transient elevation of thresholds after the initial improvement was originally called a 'bounce' by Hirsh and Ward (1952), Kemp (1986) suggests that the initial rapid recovery is the oddity: under some conditions a low-frequency tone can produce hypersensitivity in otoacoustic emissions, psychophysical thresholds, and perceived loudness (Kemp's 'bounce') without a later elevation of threshold (Hirsh and Ward's 'bounce'). Kemp also suggested that the transient hypersensitivity was caused by changes in the sensitivity of the active process within the cochlea. We have investigated the origin of this transient hypersensitivity (Kemp's bounce) in guinea pigs, recording cochlear potentials (CM, CAP, SP and EP) and otoacoustic emissions (DPOAEs at f2-f1, 2f1-f2, 2f2-2f1 and 3f1-2f2). Our results indicate that the bounce does not require neural activity, but is probably produced by non-neural cochlear mechanisms, possibly a transient decrease in the permeability of the organ of Corti which produces a small but significant change in standing current through outer hair cells. At least part of these changes, which are reduced as the stimulation frequency increases, and absent above 2 kHz, seem due to a small and transient movement of the cochlear partition towards scala tympani, probably due to a transient osmotic imbalance.  相似文献   

18.
Distortion Product Otoacoustic Emissions (DPOEs) are otoacoustic emissions evoked by two pure equilevel tones (f1, f2) called primaries and are believed to provide frequency-specific information regarding cochlear function. We recorded DPOEs at 2f1-f2 frequency with a constant frequency ration (f2/f1 = 1.22) in 8 normal hearing subjects (16 ears, mean age 28 +/- 1.5) to establish the characteristics of these emissions in the adult population. DPOEs were measured at the following F2 frequencies and respective fp geometric mean frequencies: 696/632, 1001/904, 1501/1360, 2002/1809, 3003/2714, 4004/3626, 5005/4531 e 6006/5435 Hz. Detailed testing included the recording of DPOE "audiograms" and input-output functions depicting the relationship of the amplitudes of DPOE to primary-tone levels ranging from 25 to 70 dB SPL in 5 dB steps. The present findings are in good agreement with investigations based on evoked otoacoustic emissions published by other researchers. The average DPOE "audiograms" demonstrated a low-frequency maximum at 1501 Hz (f2)/1360 (fp) and a high-frequency peak at 5005 Hz (f2)/4531 (fp). The two maximum regions were separated by a minimum around 3003 Hz (f2)/2714 (fp). This study confirms the feasibility of DPOE measurements among adults and provide a normal baseline for this age group. DPOEs could be useful, in association with evoked otoacoustic emissions and with auditory brainstem responses, in obtaining a precise evaluation of the peripheral auditory system.  相似文献   

19.
Distortion-product otoacoustic emissions (DPOAEs) are still undergoing evaluation for clinical use. Although the effects of ageing on otoacoustic emissions have been studied quite extensively in the past, DPOAE response-growth or input-output (I-O) measures, which are well suited as an objective method for monitoring cochlear function at specific frequencies, have been less thoroughly examined. The aim of the present study was to assess the 2f1-f2 DPOAEs in a clinical setting in order to examine the response of 20 normally hearing middle-aged adults and to compare the results with those of 20 people of the same age with ears of sensorineural high-frequency hearing loss (HL). The experiment consisted of two stages. First, the DPOAE-gram was recorded in 1-4-octave steps at a stimulus level of 70 dB SPL over a frequency range of the f2 primary tone which extended from 1.001 to 6.299 kHz. Secondly, in order to elicit DPOAE I-O functions, the two primary stimuli were presented at equilevel intensities ranging from 20 to 71 dB SPL. The stimulus-level step size was 3 dB. The I-O functions were recorded at five separate DPOAE frequencies, with the f2 frequency most closely related to the clinical audiogram (f2 = 1.0, 1.5, 2.0, 4.0 and 6.0 kHz). Two clearly separated portions in the form of the I-O function for normally hearing ears were found. The first portion, in response to primary levels of 60 dB SPL and below, showed a plateau (saturating) behaviour. If primary levels exceeded 60 dB SPL, I-O functions became more linear. The attenuation of the saturation portion of the I-O function in ears with high-frequency HL across the frequency-test range is difficult to explain because elevated behavioural thresholds were observed only for frequencies > 1.5 kHz. Thus, the more linear I-Os associated with the hearing-loss frequencies may indicate deficiencies in the active properties of outer hair cells (OHCs), whereas those for I-Os < 1.5 kHz, where hearing was normal, may indicate a beginning of damage to active OHC micromechanical processes prior to their clinical manifestation. DPOAE recordings from people with high-frequency HL, possibly age-related, supplement recordings of TEOAEs and give complementary information on degenerative changes in the outer hair-cells. DPOAE I-O functions may reveal discrete pathological alterations both in the active cochlear signal processing and in the passive mechanisms of the cochlea prior to their detection by clinical audiometric tests.  相似文献   

20.
The purpose of this study was to investigate the effect of sectioning the crossed olivocochlear bundle (COCB) on transient evoked otoacoustic emissions (TEOAEs) in anesthetized adult chinchillas. Of particular interest is the role of cochlear efferents to the outer haircells (OHCs) and how they control mechanisms responsible for otoacoustic emissions. Specifically the experiment addressed whether a tonic level of inhibitory control is reduced by COCB section. The nonlinear component of TEOAEs was measured before and after COCB section. Analysis was made of the 1, 2, 3, 4, and 5 kHz frequency components and of the total emission, as quantified by fast Fourier transform (FFT) of the raw (time domain) response. After COCB section, the amplitude of the total response and of the 2, 3, 4, and 5 kHz components increased whereas the amplitude of the 1 kHz component decreased. The results indicate that COCB section reduces inhibitory control of the OHC mechanisms responsible for nonlinear TEOAE generation. It is not clear whether the nerve section eliminates a spontaneous level of activity in COCB efferents, or whether it results in the interruption of a stimulus-evoked feedback loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号