首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 703 毫秒
1.
利用溶胶-凝胶法(sol-gel)制备了多晶类钙钛矿型稀土锰氧化物La0.60Sr0.40-xKxMnO3(x=0.00,0.15,0.20,0.30)。发现K+取代部分Sr2+后,可使样品的居里温度降至室温附近,并且使样品的室温磁电阻比替代前明显增大。在1.8T的磁场下,x=0.30的样品磁电阻峰值为21%,相应的峰值温度为304K。而母体La0.60Sr0.40MnO3的磁电阻峰值仅为6.4%,峰值温度为373K。可见K+离子替代使室温附近样品的庞磁电阻效应有了明显的改善。  相似文献   

2.
采用溶胶-凝胶法(sol-gel)制备了名义组分为La0.60Sr0.40-xNaxMnO3(x=0.00,0.10,0.15,0.20,0.30,0.33,0.35)的类钙钛矿型稀土锰氧化物多晶样品。发现用Na+替代部分Sr+2后,可使样品的居里温度降至室温附近,并且使样品的室温磁电阻比替代前明显增大。在1.8T的磁场作用下,样品La0.60Sr0.07Na0.33MnO3在292K时磁电阻为24.4%,比不含Na的La0.60Sr0.40MnO3增大了2.8倍;样品La0.60Sr0.25Na0.15MnO3在285K~345K温区内磁电阻保持在3.9%(±0.2%)左右,受温度影响不大,因此显著提高了样品的室温磁电阻和其温度稳定性。迄今为止还未见这类材料在室温附近具有如此宽范围和高温度上限的MR温度稳定性报道。这对于该类磁电阻材料的应用有很大意义。  相似文献   

3.
采用溶胶一凝胶(sol-gel)法制备了名义组分为La0.67Sr0.33-XCuXMnO3(x=0~0.33)的多晶样品,发现用Cu替代少部分Sr后样品的室温磁电阻比替代前的明显增大.在1.8T磁场作用下,当x=0.15时,磁电阻峰值为27.7%,峰值温度为306K,当温度低于306K时磁电阻值随温度的升高而增大,当温度高于306K时磁电阻值随温度的升高而减小;当x=0.1时,在295K-310K温度之间磁电阻值达19%左右,受温度影响很小;因此在提高了室温磁电阻值的同时,又提高了磁电阻的温度稳定性.这对于该类磁电阻材料的应用具有很大意义.  相似文献   

4.
采用溶胶-凝胶(sol-gel)法制备了名义组分为La0.67Sr0.20Cu0.10□0.03MnO3(□代表阳离子空位)的多晶母体粉体材料,在不同温度(200℃,250℃,300℃)的氢气环境中对母体粉体材料还原15分钟后,在1100℃氩气环境中烧结12小时得到系列块体样品。研究了块体样品的相结构,导电性质、磁学性质以及磁电阻效应。实验结果表明,在适当温度的氢气环境中对粉体材料还原,可减少乃至消除粉体样品中的Mn3O4杂相,从而可以使块体样品电阻率降低,磁电阻峰值提高。在1.8T外磁场下,La0.67Sr0.20Cu0.10□0.03MnO3母体样品的磁电阻在319K出现峰值,其峰值为24.6%;在250℃还原15分钟样品,其磁电阻峰值达到31.5%。  相似文献   

5.
户立春  赵宏微  唐贵德 《材料导报》2013,27(6):61-63,82
采用固相反应法制备了La0.6Sr0.15Na0.1□0.15MnO3+xAgNO3(x=0.08、0.16、1.00,x为物质的量比,□代表空位)系列复合材料样品,对复合样品的相结构、磁性质及其磁电阻效应进行了研究。通过相结构的研究发现:复合样品近似呈现La0.6Sr0.15Na0.1□0.15MnO3/Ag/Mn3O4的特殊复合结构。通过对磁电阻的研究发现:复合样品不同程度地提高了母体样品的MR峰值,降低了峰值温度,使其更接近室温。在204~280K的温度范围内和1.8T外磁场作用下,当x=0.08时,MR保持在(4.70±0.25)%;x=0.16时,MR保持在(7.20±0.28)%。所以,复合样品较之母体样品,磁电阻的温度稳定性有了很大提高。  相似文献   

6.
利用掺杂锰氧化物La0.60Sr0.05Na0.05MnO3和La0.60Sr0.15Na0.25MnO3两种块体材料串联焊接成异质结构样品,其磁电阻在不同温度出现两个峰值。得到启示:选取一系列磁电阻峰值在不同温度的材料,制成异质结构样品多层膜,适当调整各层膜厚度的比例,可以使多层膜的磁电阻在一个较宽的温度区间内保持基本稳定,并且有较好的磁场灵敏度,从而成为较好的磁电阻磁场传感器。  相似文献   

7.
将La0.67Sr0.33MnO3(LSMO)、Ag2O及TiO2粉混合经高温烧结后制备了钙钛矿相/xAg两相复合体系(x是Ag与钙钛矿材料的物质的量比),系统地研究了Ag-Ti的共掺杂对LSMO电性和磁电阻效应的影响.0.07摩尔比Ti4+离子的B位掺杂使LSMO的居里温度降至室温.Ag的掺入对Tc影响不大,Tp逐渐升高.由于钙钛矿颗粒属性的改善和金属导电通道的出现,材料的电阻率明显下降.Ag掺杂使室温磁电阻得到显著增强,室温下从x=0.30样品中得到最大的磁电阻,约为32%,是La0.67Sr0.33MnO3样品的8倍,La0.67Sr0.33Mn0.93Ti0.07O3样品的1.6倍.  相似文献   

8.
基于探讨钙钛矿型锰氧化物磁电阻效应的目的,样品采用固相反应法制备,主要就LaMnO3的A位二元掺杂对磁电阻效应的影响作比较研究,发现(La1-xRx)0.67T0.33MnO3(T为Ca,Sr;R为Sm,Gd,Tb,Y)随x的增加,Tp和Tc逐渐降低,ρm和磁电阻值迅速增加,均可用晶格效应来解释;La0.67Sr0.33-xCuxMnO3(0≤x≤O.33)的Tp随x的增加而下降,室温磁电阻值明显增大还提高了其温度稳定性,是因A位平均离子半径和A位离子的失配度起主要作用;La0.67(Ba1-xCax)0.33MnO3(x=0,0.40,0.45,0.55,0.60,1.00)的ρ-T变化呈现双峰特性,在O.4 T的磁场下,在77 K~230 K的温区内,磁电阻随T的升高而单调下降,可用晶界效应来解释,在Tc附近出现峰值磁电阻,这种高温磁电阻变化行为可用DE模型及非磁无序来说明;La0.5Ca0.5-xBaxMnO3(0≤x≤0.50)系列样品,当x≥0.14时随x的增加Tp升高,Tp处的峰值电阻逐渐减小,在5 T的磁场下,x≤0.20时磁电阻随T的降低先增大后减小再增大,峰值在Tp附近,x≥0.20时磁电阻随T降低而线性增加,其原因是相邻Mn离子间存在铁磁性和反铁磁性两种效应相互竞争.  相似文献   

9.
La0.67Ba0.33MnO3中Ag的掺杂效应   总被引:4,自引:0,他引:4  
在溶胶-凝胶法制备的La0.67 Ba0.33 MnO3(LBMO)微粉中掺入Ag2O粉,制成一系列(LBMO)/(Ag2O)x/2(x=0~0.35,为摩尔比)掺杂材料,实验结果发现Ag掺杂可明显降低材料的电阻率。当掺Ag量为x=0.25时,样品的电阻率达到最低值。同时在居里点附近,样品的峰值磁电阻得到显著增强。微量的Ag掺杂有助于提高样品的自旋相关隧穿磁电阻,使低场磁电阻得到显著增强。  相似文献   

10.
La-Gd-Ca-Mn-O的磁性、电性和磁电阻效应   总被引:1,自引:0,他引:1  
在La0 67Ca0 33 MnO3 中进行了掺Gd研究 ,结果发现 ,经 140 0℃烧结的样品 ,获得了最佳的磁电阻效应。随掺Gd量增加 ,材料的相变温度逐渐下降 ,对应的峰值电阻率大幅度增加 ,居里温度逐渐下降 ,磁电阻比明显提高。掺入 11%的Gd后 ,可以使磁电阻比提高一个数量级。这些变化可以用晶格效应来解释。  相似文献   

11.
系统地研究了Ti掺杂对La0.67Ba0.33MnO3颗粒材料磁性、电性和磁电阻效应的影响,随着Ti含量的增加,材料的磁化强度和居里温度快速下降,电阻率急剧增大,电阻率的峰值逐渐向低温移动。Ti的掺杂对材料低温下低场磁电阻影响不大,主要是显著提高了材料的本征磁电阻。1%的Ti掺杂使材料的室温磁电阻得到显著增强,1T磁场下,室温磁电阻达到-8.4%,比未掺杂的La0.67Ba0.33MnO3材料增强了50%。  相似文献   

12.
由溶胶-凝胶法制备出锰酸盐La0.7Sr0.3MnO3粉料,经1300K热压并在1573K高温下烧结成块材,并与Pb(Zr,Ti)O3胶合形成弹性耦合双层膜.相较于涂敷膜(tape casting)复合样品,该双层膜显示出更为优良的ME耦合效应.横向耦合要比纵向耦合更为强烈,并当外加磁场为150 Oe时ME电压系数达到峰值.分析表明由磁场和频率变化导致的ME系数变化的实验值与理论值符合的很好.  相似文献   

13.
系统研究了Mn位替代的La0.67Ca0.33Mn1-xAlxO3体系的结构和输运特性.结果表明,随Al3+替代含量的增加,在整个替代范围内,晶胞体积表现出单调减小的规律.而体系的电阻率急剧增加,绝缘体-金属转变温度TIM向低温方向移动,且与Al3+替代含量存在线性关联.对少量Al3+替代含量,在T>TIM的高温区域体系的输运特性满足热激活模型,在T<TIM的低温区域满足金属输运行为.这种输运行为随Al3+替代的变化特征,可从Al3+离子对Mn3+-O2--Mn4+双交换通道的破坏和所导致的晶格畸变方面给予解释, Al3+替代改变了电子的局域环境,进而影响到体系的输运行为.  相似文献   

14.
by Tb in (La1-xTbx)0.67Sr0.33MnO3, the room temperature magnetoresistance △R/R0 drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room temperature magnetoresistance at a field H=12 kOe for (La1-xTbx)0.67Sr0.33MnO3 is -3.56%. The enhancement of the room temperature magnetoresistance induced by an appropriate Tb substitution in (La1-xTbx)0.67Sr0.33MnO3 is correlated with the shifts of the Curie temperature and metal-insulator temperature to near room temperature. The drop of the room temperature magnetoresistance at large Tb doping-contents may be due to its lower TC and TMI far from the room temperature.  相似文献   

15.
Nano-SiO_2 with high activity and mesopores was prepared through sol-gel synthesis followed by low-temperatureheat treatment and ball milling firstly in our experiments. TEM was performed to measure particle sizes. Nitrogenadsorption experiments were carried out to estimate specific surface area, porous distribution and porous ratio by BETand BJH methods. The content of Si-OH in SiO_2 surface was calculated by analysis of the results of hydrogen-oxygencontent mensuration (HOCM). As a result, appropriate heat treatment system and ball milling time are important topreparation for nano-SiO_2 with high activity and mesopores, which are 5~50 nm particles, 5~6 nm average aperture,85%~93% porous ratio, and 51%~55% Si-OH content in surface. Nano-SiO_2 with that structure has high surfaceenergy and activity. This process, which has simple facilities and operation rules, is a new way of preparation fornano-SiO_2 with high activity and mesopores.  相似文献   

16.
采用射频磁控溅射法制备了Ca、Sr双掺杂La2/3(Ca1/3Sr2/3)1/3MnO3(LCSMO)薄膜。电阻率-温度特性表明,薄膜在387K时发生铁磁金属相-顺磁非导体相相变。同时测试了薄膜在180,230和280K温度下的伏安特性.表明所制备的薄膜具有自阻效应,并分析了产生该现象的原因。  相似文献   

17.
Nd1-xSrxMn1-yCuyO3/NiFe2O4复合体系的磁电阻效应研究   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了Nd1-xSrxMn1-yCuO3(x=0.33、0.2,y=0.05、0.2)微粉,平均粒径约为150nm;采用化学共沉淀法制备了NiFe2O4;微粉,平均粒径为70nm;将两种粉体充分混合、压成片状后烧结成多晶块体复合材料。经测量NiFe2O4质量百分比为30%的Nd0.67Sr0.33Mn0.8Cu0.2O3/NiFe2O4复合样品在1.8T磁场作用下,在293~315K温度范围内磁电阻MR基本保持在-13.6%.说明在室温附近温度稳定性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号