首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated the thermal conductivity of HfB2-based ultra-high-temperature ceramics from laser flash diffusivity measurements in the 25°–600°C temperature range. Commercially available powders were used to prepare HfB2 composites containing 20 vol% SiC, some including TaSi2 (5 vol%) and Ir (0.5 or 2 vol%) additions. Samples were consolidated via conventional hot pressing or spark plasma sintering. Processing differences were shown to lead to differences in magnitude and temperature dependence of effective thermal conductivity. We compared results with measured values from heritage materials and analyzed trends using a network model of effective thermal conductivity, incorporating the effects of porosity, grain size, Kapitza resistance, and individual constituent thermal conductivities.  相似文献   

2.
A ZrB2-based composite was fully densified by pressureless sintering at 1850°C with addition of 20 vol% MoSi2. The microstructure was very fine, with mean dimensions of ZrB2 grains around 2.5 μm. The four-point flexural strength in air was in excess of 500 MPa up to 1500°C.  相似文献   

3.
MoSi2-particulate-reinforced α-SiAlON ceramic composites containing 10, 20, 25, and 30 vol% were prepared by hot pressing at 1750°-1800°C. The α-SiAlON matrix was of the composition (Y0.48Si10.00A12.30O1.17N15.29). The hardness for the fully dense samples changed from HV10 = 22.5 to 15.3 GPa and the toughness from 3.2 to around 5.2 MPa.m1/2 when up to 30 vol% MoSi2 was present. Two interesting microstructural features have been found. First, with an increasing amount of MoSi2 a pronounced coalescence of MoSi2 particles formed a "dual phase" material. The second effect was the growth of elongated α-SiAlON grains in the matrix with 10 vol% MoSi2 added. The oxidation resistance has been determined to be unaffected by the addition of 2hd vol % MoSi2 at 1250°C in oxygen gas of l atm pressure.  相似文献   

4.
Silicon nitride (Si3N4) ceramics, prepared with Y2O3 and Al2O3 sintering additives, have been densified in air at temperatures of up to 1750°C using a conventional MoSi2 element furnace. At the highest sintering temperatures, densities in excess of 98% of theoretical have been achieved for materials prepared with a combined sintering addition of 12 wt% Y2O3 and 3 wt% Al2O3. Densification is accompanied by a small weight gain (typically <1–2 wt%), because of limited passive oxidation of the sample. Complete α- to β-Si3N4 transformation can be achieved at temperatures above 1650°C, although a low volume fraction of Si2N2O is also observed to form below 1750°C. Partial crystallization of the residual grain-boundary glassy phase was also apparent, with β-Y2Si2O7 being noted in the majority of samples. The microstructures of the sintered materials exhibited typical β-Si3N4 elongated grain morphologies, indicating potential for low-cost processing of in situ toughened Si3N4-based ceramics.  相似文献   

5.
High-Density Pressureless-Sintered HfC-Based Composites   总被引:1,自引:0,他引:1  
Hafnium carbide (HfC)-(5, 10, and 20 vol%) MoSi2 ceramics were pressureless sintered at 1950°C in an argon flux. The materials had nearly full density (96%–98%), with mean grain sizes in the range of 3–4 μm. Depending on the MoSi2 amount (5–20 vol%), the mechanical properties were in the following ranges: hardness 16–15 GPa, Young's modulus 434–385 GPa, fracture toughness 3.6–3.4 MPa·m1/2, and room-temperature 4-point flexural strength 465–383 MPa.  相似文献   

6.
The densification of non-oxide ceramics like titanium boride (TiB2) has always been a major challenge. The use of metallic binders to obtain a high density in liquid phase-sintered borides is investigated and reported. However, a non-metallic sintering additive needs to be used to obtain dense borides for high-temperature applications. This contribution, for the first time, reports the sintering, microstructure, and properties of TiB2 materials densified using a MoSi2 sinter-additive. The densification experiments were carried out using a hot-pressing and pressureless sintering route. The binderless densification of monolithic TiB2 to 98% theoretical density with 2–5 μm grain size was achieved by hot pressing at 1800°C for 1 h in vacuum. The addition of 10–20 wt% MoSi2 enables us to achieve 97%–99%ρth in the composites at 1700°C under similar hot-pressing conditions. The densification mechanism is dominated by liquid-phase sintering in the presence of TiSi2. In the pressureless sintering route, a maximum of 90%ρth is achieved after sintering at 1900°C for 2 h in an (Ar+H2) atmosphere. The hot-pressed TiB2–10 wt% MoSi2 composites exhibit high Vickers hardness (∼26–27 GPa) and modest indentation toughness (∼4–5 MPa·m1/2).  相似文献   

7.
The thermal and electrical properties of MoSi2 and/or SiC-containing ZrB2-based composites and the effects of MoSi2 and SiC contents were examined in hot-pressed ZrB2–MoSi2–SiC composites. The thermal conductivity and electrical conductivity of the ZrB2–MoSi2–SiC composites were measured at room temperature by a nanoflash technique and a current–voltage method, respectively. The results indicate that the thermal and electrical conductivities of ZrB2–MoSi2–SiC composites are dependent on the amount of MoSi2 and SiC. The thermal conductivities observed for all of the compositions were more than 75 W·(m·K)−1. A maximum conductivity of 97.55 W·(m·K)−1 was measured for the 20 vol% MoSi2-30 vol% SiC-containing ZrB2 composite. On the other hand, the electrical conductivities observed for all of the compositions were in the range from 4.07 × 10–8.11 × 10 Ω−1·cm−1.  相似文献   

8.
The microstructure of two pressureless-sintered ultra-high-temperature ceramics, namely ZrC+20 vol% MoSi2 and HfC+20 vol% MoSi2, was characterized by scanning and transmission electron microscopy. With regard to the ZrC–MoSi2 system, Zr x Si y compounds and SiC were detected. In the HfC–MoSi2 system, a mixed phase was detected at the triple points and identified as (Mo,Hf)5Si3. For both the systems investigated, the high wettability of the silicide-based phases on the matrix grains suggests that sintering is assisted by a liquid phase. This contribution reports for the first time on the sintering mechanisms of early transition metal carbides doped with MoSi2 as a sinter additive, on the basis of the microstructural evolution observed upon sintering and in the light of phase diagrams and thermodynamical calculations.  相似文献   

9.
Fine hafnium diboride (HfB2) powders have been prepared by modified carbothermal/borothermal reduction of hafnium dioxide (HfO2) at relatively low temperatures (1500°–1600°C) for 1–2 h. The XRD patterns could be indexed as hexagonal HfB2 and no evidence of HfC, HfO2, or other impurities was observed. Glow discharge mass spectrometer analysis indicates that the synthesized HfB2 powders had high purity. The synthesized HfB2 powders had small average crystallite size (around 1 μm) and low oxygen content (<0.30 wt%). Scanning electron microscopy observation of the as-prepared powders demonstrated quasi-column morphology and laser particle size analysis showed monodispersity (polydispersity 0.005).  相似文献   

10.
The long-term high-temperature cyclic oxidation (100 cycles, 104 h, 1500°C) of a Si3N4 material and a Si3N4/MoSi2 composite, both fabricated with Y2O3 as a sintering additive, was studied. Both materials exhibited similar oxidation rates because of surface SiO2 formation described by an almost parabolic law and a total weight gain of 3–4 mg/cm2 after 104 h. As a consequence of oxidation processes in the bulk, microstructural damage was found in the Si3N4 material. These effects were not observed in the composite. The remarkable microstructural stability observed offers the high potential of Si3N4/MoSi2 composites for long-term structural applications at elevated temperatures up to 1500°C.  相似文献   

11.
The emissivity and the catalytic efficiency related to atomic oxygen recombination were investigated experimentally in the range 1000–2000 K for ZrB2 and ZrB2–HfB2-based ceramics. In order to evaluate the effect of the machining method, two series of samples, one prepared by electrical discharge machining and the other machined by diamond-loaded tools, were tested. High emissivity (about 0.7 at 1700 K) and low recombination coefficients (on average 0.08 at 1800 K) were found for all the materials. The experimental data showed an effect of the surface machining on the catalytic behavior only on the ZrB2-based composite; conversely, small variations were found in the recombination coefficients of ZrB2–HfB2-based samples for the different machining processes. The surface finish affected the emissivity at lower temperatures in both compositions, with the effect becoming negligible at temperatures above 1500 K.  相似文献   

12.
Two SiC-containing metal diborides materials, classified in the ultra-high-temperature ceramics (UHTCs) group, were fabricated by hot-pressing. SiC, sinterability apart, promoted resistance to oxidation of the diboride matrices. Both the compositions, oxidized in air at 1450°C for 1200 min, had mass gains lower than 5 mg/cm2. Slight deviations from parabolic oxidation kinetics were seen. The resistance to thermal shock (TSR) was studied through the method of the retained flexure strength after water quenching (20°C of bath temperature). Experimental data showed that the (ZrB2+HfB2)–SiC and the ZrB2–SiC materials retained more than 70% of their initial mean flexure strength for thermal quenchs not exceeding 475° and 385°C, respectively. Certain key TSR properties (i.e., fracture strength and toughness, elastic modulus, and thermal expansion coefficient) are very similar for the two compositions. The observed superior critical thermal shock of the (ZrB2+HfB2)–SiC composite was explained in terms of more favorable heat transfer parameters conditions that induce less severe thermal gradients across the specimens of small dimensions (i.e., bars 25 mm × 2.5 mm × 2 mm) during the quench down in water. The experimental TSRs are expected to approach the calculated R values (196° and 218°C for ZrB2+HfB2–SiC and ZrB2–SiC, respectively) as the specimen size increases.  相似文献   

13.
Refractory Diborides of Zirconium and Hafnium   总被引:9,自引:1,他引:9  
This paper reviews the crystal chemistry, synthesis, densification, microstructure, mechanical properties, and oxidation behavior of zirconium diboride (ZrB2) and hafnium diboride (HfB2) ceramics. The refractory diborides exhibit partial or complete solid solution with other transition metal diborides, which allows compositional tailoring of properties such as thermal expansion coefficient and hardness. Carbothermal reduction is the typical synthesis route, but reactive processes, solution methods, and pre-ceramic polymers can also be used. Typically, diborides are densified by hot pressing, but recently solid state and liquid phase sintering routes have been developed. Fine-grained ZrB2 and HfB2 have strengths of a few hundred MPa, which can increase to over 1 GPa with the addition of SiC. Pure diborides exhibit parabolic oxidation kinetics at temperatures below 1100°C, but B2O3 volatility leads to rapid, linear oxidation kinetics above that temperature. The addition of silica scale formers such as SiC or MoSi2 improves the oxidation behavior above 1100°C. Based on their unique combination of properties, ZrB2 and HfB2 ceramics are candidates for use in the extreme environments associated with hypersonic flight, atmospheric re-entry, and rocket propulsion.  相似文献   

14.
Effects of Ag addition on sintering of a crystallizable CaO-B2O3-SiO2 glass have been investigated at 700°–900°C in different atmospheres. With Ag content increasing in the range of 1–10 vol%, the softening point, the densification, the onset crystallization temperature, and the total amount of crystalline phase formed of the crystallizable glass are reduced when fired in air. A bloating phenomenon is observed when the crystallizable CaO-B2O3-SiO2 glass doped with 1–10 vol% Ag is fired at 700°–900°C for 1–4 h. Fired in N2 or N2+ 1% H2, however, the above phenomena disappear completely. It is thus believed that the diffusion of Ag into the crystallizable glass, which is caused by the oxidation of Ag in air, is the root cause for the above results observed.  相似文献   

15.
Details of the fabrication and microstructures of hot-pressed MoSi2 reinforced–Si3N4 matrix composites were investigated as a function of MoSi2 phase size and volume fraction, and amount of MgO densification aid. No reactions were observed between MoSi2 and Si3N4 at the fabrication temperature of 1750°C. Composite microstructures varied from particle–matrix to cermet morphologies with increasing MoSi2 phase content. The MgO densification aid was present only in the Si3N4 phase. An amorphous glassy phase was observed at the MoSi2–Si3N4 phase boundaries, the extent of which decreased with decreased MgO level. No general microcracking was observed in the MoSi2–Si3N4 composites, despite the presence of a substantial thermal expansion mismatch between the MoSi2 and Si3N4 phases. The critical MoSi2 particle diameter for microcracking was calculated to be 3 μm. MoSi2 particles as large as 20 μm resulted in no composite microcracking; this indicated that significant stress relief occurred in these composites, probably because of plastic deformation of the MoSi2 phase.  相似文献   

16.
The physical and mechanical properties of hot-pressed Si3N4–MoSi2 particulate composites containing 15 and 30 vol% MoSi2 were studied. The average room-temperature four-point bend strength, fracture toughness, and electrical resistivity are 522 MPa, 3.6 MPa·√m, and 6.3 × 105Χ·cm for the 15 vol% MoSi2 composite, and 487 MPa, 5.3 MPa·√m, and 0.31 Ω·cm for the 30 vol% MoSi2 composite. The mechanical properties of the composites are very close to those of hot-pressed Si3N4 ceramics. The high electrical conductivity of the 30 vol% MoSi2 composite was attributed to the percolation effect of MoSi2 particles. Parabolic oxidation behaviors were observed for the 30 vol% MoSi2 composite during the 1200°C long-term oxidation experiments.  相似文献   

17.
A thin film (60 μm thick) of a gadolinium-doped ceria (GDC) electrolyte was prepared by the doctor blade method. This film was laminated with freeze-dried 42 vol% NiO–58 vol% GDC mixed powder and pressed uniaxially or isostatically under a pressure of 294 MPa. This laminate was cosintered at 1100 °–1500 °C in air for 4–12 h. The laminate warped because of the difference in the shrinkage of the electrolyte and electrode during the sintering. A higher shrinkage was measured for the electrode at 1100 °–1200 °C and for the electrolyte at 1300 °–1500 °C. The increase of the thickness of anode was effective in decreasing the warp and in increasing the density of the laminated composite. The maximum electric power density with a SrRuO3 cathode using 3 vol% H2O-containing H2 fuel was 100 mW/cm2 at 600 °C and 380 mW/cm2 at 800 °C, respectively, for the anode-supported GDC electrolyte with 30 μm thickness.  相似文献   

18.
Si3N4/MoSi2 and Si3N4/WSi2 composites were prepared by reaction-bonding processes using as starting materials powder mixtures of Si-Mo and Si-W, respectively. A presintering step in an At-base atmosphere was used before nitriding for the formation of MoSi2 and WSi2; the nitridation in a N2-base atmosphere was followed after presintering with the total stepwise cycle of 1350°C × 20 h +1400°C × 20 h +1450°C × 2 h. The final phases obtained in the two different composites were Si3N4 and MoSi2 or WSi2; no free elemental Si and Mo or W were detected by X-ray diffraction.  相似文献   

19.
The effect of Si3N4, Ta5Si3, and TaSi2 additions on the oxidation behavior of ZrB2 was characterized at 1200°–1500°C and compared with both ZrB2 and ZrB2/SiC. Significantly improved oxidation resistance of all Si-containing compositions relative to ZrB2 was a result of the formation of a protective layer of borosilicate glass during exposure to the oxidizing environment. Oxidation resistance of the Si3N4-modified ceramics increased with increasing Si3N4 content and was further improved by the addition of Cr and Ta diborides. Chromium and tantalum oxides induced phase separation in the borosilicate glass, which lead to an increase in liquidus temperature and viscosity and to a decrease in oxygen diffusivity and of boria evaporation from the glass. All tantalum silicide-containing compositions demonstrated phase separation in the borosilicate glass and higher oxidation resistance than pure ZrB2, with the effect increasing with temperature. The most oxidation-resistant ceramics contained 15 vol% Ta5Si3, 30 vol% TaSi2, 35 vol% Si3N4, or 20 vol% Si3N4 with 10 mol% CrB2. These materials exceeded the oxidation resistance of the ZrB2/SiC ceramics below 1300°–1400°C. However, the ZrB2/SiC ceramics showed slightly superior oxidation resistance at 1500°C.  相似文献   

20.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号