首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Here we report a method of immobilising the chaperonins GroEL and GroES to a glass matrix. The immobilised chaperone system has been used to successfully refold target proteins denatured by guanidine hydrochloride and produce substantially higher levels of active protein than occur on dilution into aqueous solution alone. The chaperone system has been shown to refold proteins from each of the three categories of GroEL substrate. The refolding of the enzyme glycerol dehydrogenase from Bacillus stearothermophilus shows a two-fold increase in activity in the presence of immobilised GroEL compared to that in free solution. The lactate dehydrogenase from B. stearothermophilus also shows a two-fold higher yield of activity in the presence of the immobilised GroEL and ATP. The presence of immobilised GroEL in the absence of ATP arrests the refolding of LDH. The enzyme citrate synthetase from porcine heart demonstrates a three-fold increase in activity when refolded in the presence of immobilised GroEL, ATP and free GroES. Similar results are obtained in the presence of free GroEL, immobilised GroES and ATP. The matrix-bound chaperone can be removed from the refolding mixture by centrifugation, producing a reusable system that can be easily isolated and purified from the refolded substrate.  相似文献   

2.
The refolding characteristics of Taka-amylase A (TAA) from Aspergillus oryzae in the presence of the chaperonin GroE were studied in terms of activity and fluorescence. Disulfide-bonded (intact) TAA and non-disulfide-bonded (reduced) TAA were unfolded in guanidine hydrochloride and refolded by dilution into buffer containing GroE. The intermediates of both intact and reduced enzymes were trapped by GroEL in the absence of nucleotide. Upon addition of nucleotides such as ATP, ADP, CTP or UTP, the intermediates were released from GroEL and recovery of activity was detected. In both cases, the refolding yields in the presence of GroEL and ATP were higher than spontaneous recoveries. Fluorescence studies of intrinsic tryptophan and a hydrophobic probe, 8-anilinonaphthalene-1-sulfonate, suggested that the intermediates trapped by GroEL assumed conformations with different hydrophobic properties. The presence of protein disulfide isomerase or reduced and oxidized forms of glutathione in addition to GroE greatly enhanced the refolding reaction of reduced TAA. These findings suggest that GroE has an ability to recognize folding intermediates of TAA protein and facilitate refolding, regardless of the existence or absence of disulfide bonds in the protein.  相似文献   

3.
The mammalian mitochondrial enzyme, rhodanese, can form stable complexes with the Escherichia coli chaperonin GroEL if it is either refolded from 8 M urea in the presence of chaperonin or is simply added to the chaperonin as the folded conformer at 37 degreesC. In the presence of GroEL, the kinetic profile of the inactivation of native rhodanese followed a single exponential decay. Initially, the inactivation rates showed a dependence on the chaperonin concentration but reached a constant maximum value as the GroEL concentration increased. Over the same time period, in the absence of GroEL, native rhodanese showed only a small decline in activity. The addition of a non-denaturing concentration of urea accelerated the inactivation and partitioning of rhodanese onto GroEL. These results suggest that the GroEL chaperonin may facilitate protein unfolding indirectly by interacting with intermediates that exist in equilibrium with native rhodanese. The activity of GroEL-bound rhodanese can be completely recovered upon addition of GroES and ATP. The reactivation kinetics and commitment rates for GroEL-rhodanese complexes prepared from either unfolded or native rhodanese were identical. However, when rhodanese was allowed to inactivate spontaneously in the absence of GroEL, no recovery of activity was observed upon addition of GroEL, GroES, and ATP. Interestingly, the partitioning of rhodanese and its subsequent inactivation did not occur when native rhodanese and GroEL were incubated under anaerobic conditions. Thus, our results strongly suggest that the inactive intermediate that partitions onto GroEL is the reversibly oxidized form of rhodanese.  相似文献   

4.
The refolding of the tetrameric, metalloenzyme glycerol dehydrogenase (GDH) from Bacillus stearothermophilus has been investigated using stopped-flow fluorescence and circular dichroism spectroscopy. The effects of metal ions on the refolding of the native enzyme and the refolding of a monomeric mutant ([A208]GDH) have also been studied. The refolding process of the wild-type enzyme is at least biphasic; 70% of the respective signal changes occur in the first 2 ms followed by a slower process with a half-life of 3 s. The presence of the metal ion does not affect the slowest biphasic refolding rate, which is virtually the same for all three versions of the enzyme. The presence of GroEL slows down the first phase of refolding. The reassociation of subunits was examined by measuring the regain in catalytic activity and the enhancement in the fluorescence emission from NADH on binding to the oligomeric form of the enzyme. The rate and extent of reassociation is dependent on enzyme concentration and the extent of reactivation is dependent on the presence of the metal ion. The reassociation process was more efficient in the presence of NADH particularly for the metal-depleted enzyme (apo-GDH). The presence of GroEL or GroEL plus ATP leads to a higher yield of reassociation and therefore catalytically active enzyme. The additional presence of Mg-ATP does not affect the extent of reassociation, but has a small positive effect on the rate of reassociation. These data suggest that GDH is bound weakly to GroEL and that GroES is not required for release of the protein.  相似文献   

5.
We have analyzed the effects of different components of the GroE chaperonin system on protein folding by using a nonpermissive substrate (i.e., one that has very low spontaneous refolding yield) for which rate data can be acquired. In the absence of GroES and nucleotides, the rate of GroEL-mediated refolding of heat- and DTT-denatured mitochondrial malate dehydrogenase was extremely low, but some three times higher than the spontaneous rate. This GroEL-mediated rate was increased 17-fold by saturating concentrations of ATP, 11-fold by ADP and GroES, and 465-fold by ATP and GroES. Optimal refolding activity was observed when the dissociation of GroES from the chaperonin complex was dramatically reduced. Although GroEL minichaperones were able to bind denatured mitochondrial malate dehydrogenase, they were ineffective in enhancing the refolding rate. The spectrum of mechanisms for GroE-mediated protein folding depends on the nature of the substrate. The minimal mechanism for permissive substrates (i.e., having significant yields of spontaneous refolding), requires only binding to the apical domain of GroEL. Slow folding rates of nonpermissive substrates are limited by the transitions between high- and low-affinity states of GroEL alone. The optimal mechanism, which requires holoGroEL, physiological amounts of GroES, and ATP hydrolysis, is necessary for the chaperonin-mediated folding of nonpermissive substrates at physiologically relevant rates under conditions in which retention of bound GroES prevents the premature release of aggregation-prone folding intermediates from the chaperonin complex. The different mechanisms are described in terms of the structural features of mini- and holo-chaperones.  相似文献   

6.
As a basic principle, assisted protein folding by GroEL has been proposed to involve the disruption of misfolded protein structures through ATP hydrolysis and interaction with the cofactor GroES. Here, we describe chaperonin subreactions that prompt a re-examination of this view. We find that GroEL-bound substrate polypeptide can induce GroES cycling on and off GroEL in the presence of ADP. This mechanism promotes efficient folding of the model protein rhodanese, although at a slower rate than in the presence of ATP. Folding occurs when GroES displaces the bound protein into the sequestered volume of the GroEL cavity. Resulting native protein leaves GroEL upon GroES release. A single-ring variant of GroEL is also fully functional in supporting this reaction cycle. We conclude that neither the energy of ATP hydrolysis nor the allosteric coupling of the two GroEL rings is directly required for GroEL/GroES-mediated protein folding. The minimal mechanism of the reaction is the binding and release of GroES to a polypeptide-containing ring of GroEL, thereby closing and opening the GroEL folding cage. The role of ATP hydrolysis is mainly to induce conformational changes in GroEL that result in GroES cycling at a physiologically relevant rate.  相似文献   

7.
Heat-shock proteins DnaK, DnaJ, and GrpE (KJE) from Escherichia coli constitute a three-component chaperone system that prevents aggregation of denatured proteins and assists the refolding of proteins in an ATP-dependent manner. We found that the rate of KJE-mediated refolding of heat- and chemically denatured proteins is decreased at high temperatures. The efficiency and reversibility of protein-folding arrest during and after heat shock depended on the stability of the complex between KJE and the denatured proteins. Whereas a thermostable protein was released and partially refolded during heat shock, a thermolabile protein remained bound to the chaperone. The apparent affinity of GrpE and DnaJ for DnaK was decreased at high temperatures, thereby decreasing futile consumption of ATP during folding arrest. The coupling of ATP hydrolysis and protein folding was restored after the stress. This strongly indicates that KJE chaperones are heat-regulated heat-shock proteins which can specifically arrest the folding of aggregation-prone proteins during stress and preferentially resume refolding under conditions that allow individual proteins to reach and maintain a stable native conformation.  相似文献   

8.
The chaperonin GroEL is a large complex composed of 14 identical 57-kDa subunits that requires ATP and GroES for some of its activities. We find that a monomeric polypeptide corresponding to residues 191 to 345 has the activity of the tetradecamer both in facilitating the refolding of rhodanese and cyclophilin A in the absence of ATP and in catalyzing the unfolding of native barnase. Its crystal structure, solved at 2.5 A resolution, shows a well-ordered domain with the same fold as in intact GroEL. We have thus isolated the active site of the complex allosteric molecular chaperone, which functions as a "minichaperone." This has mechanistic implications: the presence of a central cavity in the GroEL complex is not essential for those representative activities in vitro, and neither are the allosteric properties. The function of the allosteric behavior on the binding of GroES and ATP must be to regulate the affinity of the protein for its various substrates in vivo, where the cavity may also be required for special functions.  相似文献   

9.
Trypsin-subtilisin inhibitor from marine turtle eggwhite refolded quantitatively from its fully reduced state at pH 8.5 in the presence of reduced and oxidized glutathione. The refolding process was studied by following the accompanying changes in inhibitory activity, fluorescence, sulfhydryl group titer, and hydrodynamic volume. The refolding process followed second-order kinetics with rate constants of 4.80 x 10(2) M-1 sec-1 for trypsin-inhibiting domain and 0.77 x 10(2) M-1 sec-1 for subtilisin-inhibiting domain of the inhibitor at 30 degrees C and their respective activation energies of the refolding process were 15.9 and 21.6 kcal/mol. Fluorescence intensity of the reduced inhibitor decreased with time of refolding until it corresponded to the intensity of the native inhibitor. The inhibitor contained 1-2% alpha-helix, 40-42% beta-sheet, and 57-58% random coil structure. Refolded inhibitor gave a circular dichroic spectrum identical to that of the native inhibitor. A number of principal intermediates were detected as a function of the refolding time. Size-exclusion chromatography separated the intermediates differing in hydrodynamic volume (Stokes radius). The Stokes radius ranged from 23 A (fully reduced inhibitor) to 18.8 A (native inhibitor). Results indicated the independent refolding of two domains of the inhibitor and multiple pathways of folding were followed rather than an ordered sequential pathway.  相似文献   

10.
Using stopped-flow fluorescence techniques, we have examined both the refolding and unfolding reactions of four structurally homologous dihydrofolate reductases (murine DHFR, wild-type E. coli DHFR, and two E. coli DHFR mutants) in the presence and absence of the molecular chaperonin GroEL. We show that GroEL binds the unfolded conformation of each DHFR with second order rate constants greater than 3 x 10(7) M(-1)s(-1) at 22 degrees C. Once bound to GroEL, the proteins refold with rate constants similar to those for folding in the absence of GroEL. The overall rate of formation of native enzyme is decreased by the stability of the complex between GroEL and the last folding intermediate. For wild-type E. coli DHFR, complex formation is transient while for the others, a stable complex is formed. The stable complexes are the same regardless of whether they are formed from the unfolded or folded DHFR. When complex formation is initiated from the native conformation, GroEL binds to a pre-existing non-native conformation, presumably a late folding intermediate, rather than to the native state, thus shifting the conformational equilibrium toward the non-native species by mass action. The model presented here for the interaction of these four proteins with GroEL quantitatively describes the difference between the formation of a transient complex and a stable complex as defined by the rate constants for release and rebinding to GroEL relative to the rate constant for the last folding step. Due to this kinetic partitioning, three different mechanisms can be proposed for the formation of stable complexes between GroEL and either murine DHFR or the two E. coli DHFR mutants. These data show that productive folding of GroEL-bound proteins can occur in the absence of nucleotides or the co-chaperonin GroES and suggest that transient complex formation may be the functional role of GroEL under normal conditions.  相似文献   

11.
An unresolved key issue in the mechanism of protein folding assisted by the molecular chaperone GroEL is the nature of the substrate protein bound to the chaperonin at different stages of its reaction cycle. Here we describe the conformational properties of human dihydrofolate reductase (DHFR) bound to GroEL at different stages of its ATP-driven folding reaction, determined by hydrogen exchange labeling and electrospray ionization mass spectrometry. Considerable protection involving about 20 hydrogens is observed in DHFR bound to GroEL in the absence of ATP. Analysis of the line width of peaks in the mass spectra, together with fluorescence quenching and ANS binding studies, suggest that the bound DHFR is partially folded, but contains stable structure in a small region of the polypeptide chain. DHFR rebound to GroEL 3 min after initiating its folding by the addition of MgATP was also examined by hydrogen exchange, fluorescence quenching, and ANS binding. The results indicate that the extent of protection of the substrate protein rebound to GroEL is indistinguishable from that of the initial bound state. Despite this, small differences in the quenching coefficient and ANS binding properties are observed in the rebound state. On the basis of these results, we suggest that GroEL-assisted folding of DHFR occurs by minor structural adjustments to the partially folded substrate protein during iterative cycling, rather than by complete unfolding of this protein substrate on the chaperonin surface.  相似文献   

12.
Chaperonins GroEL and GroES form two types of hetero-oligomers in vitro that can mediate the folding of proteins. Chemical cross-linking and electron microscopy showed that in the presence of adenosine triphosphate (ATP), two GroES7 rings can successively bind a single GroEL14 core oligomer. The symmetric GroEL14(GroES7)2 chaperonin, whose central cavity appears obstructed by two GroES7 rings, can nonetheless stably bind and assist the ATP-dependent refolding of RuBisCO enzyme. Thus, unfolded proteins first bind and possibly fold on the external envelope of the chaperonin hetero-oligomer.  相似文献   

13.
Fragments encompassing the apical domain of GroEL, called minichaperones, facilitate the refolding of several proteins in vitro without requiring GroES, ATP, or the cage-like structure of multimeric GroEL. We have identified the smallest minichaperone that is active in vitro in chaperoning the refolding of rhodanese and cyclophilin A: GroEL(193-335). This finding raises the question of whether the minichaperones are active under more stringent conditions in vivo. The smallest minichaperones complement two temperature-sensitive Escherichia coli groEL alleles, EL44 and EL673, at 43 degreesC. Although they cannot replace GroEL in cells in which the chromosomal groEL gene has been deleted by P1 transduction, GroEL(193-335) enhances the colony-forming ability of such cells when limiting amounts of GroEL are expressed from a tightly regulated plasmid. Surprisingly, we found that overexpression of GroEL prevents plaque formation by bacteriophage lambda and inhibits replication of the lambda origin-dependent plasmid, Lorist6. The minichaperones also inhibit Lorist6 replication, but less markedly. The complex quaternary structure of GroEL, its central cavity, and the structural allosteric changes that take place on the binding of nucleotides and GroES are not essential for all of its functions in vivo.  相似文献   

14.
When bovine beta-lactoglobulin (beta-LG) was refolded after extensive denaturation in 4.8 M guanidine hydrochloride (GuHCl), the functional activity of the protein, retinol binding, as measured by the enhancement of this ligand's fluorescence, was completely recovered. In contrast, the room-temperature tryptophan phosphorescence lifetime of the refolded protein, a local measure of the residue environment, was approximately 10 ms, significantly shorter than the phosphorescence lifetime of the untreated native protein (approximately 20 ms). The lability of the freshly refolded protein, as monitored by following the time course of its unfolding when incubated in 2.5 M GuHCl through the change in fluorescence intensity at 385 nm, was also determined and found to be increased significantly relative to untreated native protein. In contrast to the long term postactivation conformational changes detected previously in Escherichia coli alkaline phosphatase (Subramaniam V, Bergenhem NCH, Gafni A, Steel DG, 1995, Biochemistry 34:1133-1136), we found no changes in either the lability or phosphorescence decays of beta-LG during a period of 24 h. Our results are in agreement with the report by Hattori et al. (1993, J Biol Chem 268:22414-22419), using conformation-specific monoclonal antibodies to recognize native-like structure, that long-term changes occur in the protein conformation, compared with the native structure, on refolding.  相似文献   

15.
N-Terminal fragments of the rat liver elongation factor EF-2 containing 162 (17 kDa) and 244 (27 kDa) amino acid residues of 857 (95 kDa) residues of the native protein were synthesized in E. coli cells and in a wheat germ cell-free translation system, and their conformations were studied. Both fragments were synthesized as inclusion bodies (nonspecific molecular aggregates). The conformations of the fragments in a solution were studied at neutral pH values by CD, fluorescence spectroscopy, scanning microcalorimetry, viscosimetry, gel-filtration, limited proteolysis, and interaction with monospecific anti-EF-2 antibodies and GroEL/ES molecular chaperone. Under nondenaturing conditions, both fragments existed in a solution as associates within a broad range of molecular masses, contained a considerable amount of elements of the intramolecular secondary structure, and represented globules without rigid tertiary structure (molten globules). A rigid tertiary structure was not formed even after the interaction of the fragments with the GroEL/ES molecular chaperone, thus indicating that the C-terminal fragment is essential for the formation of the rigid tertiary structure. Both fragments contained conformational antigenic determinants similar to those in the whole protein; i.e., despite the absence of the rigid tertiary structure, the fragments contained elements whose structure was similar to that of the corresponding regions in the whole protein.  相似文献   

16.
17.
The degradation products of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) formed during storage at 30 degrees C in aqueous solution were characterized. Cationic exchange chromatography of the stored sample showed two major, new peaks eluting before (P1) and after (L2) the native protein, which were interconvertible. Size-exclusion chromatography and electrophoresis documented that both the P1 and L2 fractions were irreversible dimers, formed by noncovalent interactions. A competition assay with interleukin-1 indicated that on a per monomer basis the P1 and L2 dimers retained about two-thirds of the activity of the native monomer. Infrared and far-UV circular dichroism spectroscopies showed that only minor alterations in secondary structure arose upon the formation of the P1 dimer. However, alteration in the near-UV circular dichroism spectrum suggested the presence of disulfide bonds in the P1 dimer, which are absent in the native protein. Mass spectroscopy and tryptic mapping, before and after carboxymethylation, demonstrated that the P1 dimer contained an intramolecular disulfide bond between Cys-66 and Cys-69. Although conversion of native protein to the P1 dimer was irreversible in buffer alone, the native monomer could be regained by denaturing the P1 dimer with guanidine hydrochloride and renaturing it by dialysis, suggesting that the intramolecular disulfide bond does not interfere with refolding. Analysis of the time course of P1 formation during storage at 30 degrees C indicated that the process followed first-order, and not second-order, kinetics, suggesting that the rate-limiting step was not dimerization. It is proposed that a conformational change in the monomer is the rate-limiting step in the formation of the P1 dimer degradation product. Sucrose stabilized the native monomer against this process. This result can be explained by the general stabilization mechanism for this additive, which is due to its preferential exclusion from the protein surface.  相似文献   

18.
The chaperonins GroEL and GroES of Escherichia coli facilitate protein folding in an adenosine triphosphate (ATP)-dependent reaction cycle. The kinetic parameters for the formation and dissociation of GroEL-GroES complexes were analyzed by surface plasmon resonance. Association of GroES and subsequent ATP hydrolysis in the interacting GroEL toroid resulted in the formation of a stable GroEL:ADP:GroES complex. The complex dissociated as a result of ATP hydrolysis in the opposite GroEL toroid, without formation of a symmetrical GroEL:(GroES)2 intermediate. Dissociation was accelerated by the addition of unfolded polypeptide. Thus, the functional chaperonin unit is an asymmetrical GroEL:GroES complex, and substrate protein plays an active role in modulating the chaperonin reaction cycle.  相似文献   

19.
Two models are being considered for the mechanism of chaperonin-assisted protein folding in E. coli: (i) GroEL/GroES act primarily by enclosing substrate polypeptide in a folding cage in which aggregation is prevented during folding. (ii) GroEL mediates the repetitive unfolding of misfolded polypeptides, returning them onto a productive folding track. Both models are not mutually exclusive, but studies with the polypeptide-binding domain of GroEL have suggested that unfolding is the primary mechanism, enclosure being unnecessary. Here we investigate the capacity of the isolated apical polypeptide-binding domain to functionally replace the complete GroEL/GroES system. We show that the apical domain binds aggregation-sensitive polypeptides but cannot significantly assist their refolding in vitro and fails to replace the groEL gene or to complement defects of groEL mutants in vivo. A single-ring version of GroEL cannot substitute for GroEL. These results strongly support the view that sequestration of aggregation-prone intermediates in a folding cage is an important element of the chaperonin mechanism.  相似文献   

20.
We propose a mechanism for the role of the bacterial chaperonin GroEL in folding proteins. The principal assumptions of the mechanism are (i) that many unfolded proteins bind to GroEL because GroEL preferentially binds small unstructured regions of the substrate protein, (ii) that substrate protein within the cavity of GroEL folds by the same kinetic mechanism and rate processes as in bulk solution, (iii) that stable or transient complexes with GroEL during the folding process are defined by a kinetic partitioning between formation and dissociation of the complex and the rate of folding and unfolding of the protein, and (iv) that dissociation from the complex in early stages of folding may lead to aggregation but dissociation at a late stage leads to correct folding. The experimental conditions for refolding may play a role in defining the function of GroEL in the folding pathway. We propose that the role of GroES and MgATP, either binding or hydrolysis, is to regulate the association and dissociation processes rather than affecting the rate of folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号