首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过研究外加电场强度50k V/mm以下低密度聚乙烯中的空间电荷包行为,使用一种多层结构的受辐照的双面粘贴聚氟乙烯薄膜低密度聚乙烯样品,通过电子束辐照在样品内部形成"波包"分布,在外加电场强度较低时形成电荷包,使用激光压力波法监测电荷包迁移。结果表明,以电荷包峰值位置为参考点,在样品内实际电场下电荷包平均迁移率分布范围为(0.17~3.01)×10?15m2/(V·s)。通过对不同外加电场强度下的空间电荷包行为的研究得到,电荷包迁移速率与电场强度关系符合负微分迁移率假设模型,从而证明了在较低的电场强度下负微分迁移率模型的正确性。  相似文献   

2.
By utilizing the laser induced pressure-pulse (LIPP) technique, the behavior of space charge in low-density polyethylene (LDPE) and crosslinked polyethylene (XLPE) films in contact with metal or carbon-loaded semiconducting layers was studied quantitatively to clarify the space-charge characteristics in power cables. Negative heterospace charge near the anode and positive space charge in the bulk were observed in unoxidized LDPE under the fields above 120 kV/mm. The amount of negative space charge increased with applied field, while positive space charge in the bulk disappeared with increasing applied field. This indicates that electron injection and ionization are enhanced by applied field. Prominent negative homospace charge was formed near the cathode in oxidized LDPE, which indicates that oxidation enhanced electron injection. The depth of charge centroid from the cathode became larger with increasing temperature. This indicates that the effective electron mobility increases with temperature. Negative space charge also was formed in the bulk in XLPE films with metal electrodes, which indicates that crosslinking enhanced electron injection. XLPE films with a carbon-loaded semiconducting layer showed both negative and positive homospace charges near the semiconducting layers, which indicates that both electrons and holes were injected from the semiconducting layer.  相似文献   

3.
油纸绝缘介质的空间电荷积聚与消散特性   总被引:2,自引:4,他引:2  
油纸材料的绝缘问题在换流变压器、直流套管、直流电缆等高压大型直流设备大量应用的情况下显得十分突出。为探讨高压直流设备绝缘的最主要问题—空间电荷效应,应用电声脉冲法(PEA)对油纸绝缘材料的空间电荷特性进行了研究。有关外加场强对油纸材料中空间电荷积聚情况的影响和在较高场强下油纸材料的击穿破坏与空间电荷关系的研究结果表明:①低场强下油纸材料中空间电荷以电离产生为主;而在较高场强下,先后在阴极和阳极产生了同极性载流子注入。②相对于聚乙烯而言,由于油纸材料的电导率较大,材料内的空间电荷在外加电场撤去后很快消散。③空间电荷的注入和运动会导致油纸材料的劣化和破坏。油纸材料中的空间电荷快速消散现象有利于直流设备在极性反转条件下的运行,为阐释油纸绝缘良好的长期性能提供了有重要意义的试验依据。  相似文献   

4.
To understand basic electric properties of nano-sized magnesium oxide (MgO) / low-density polyethylene (LDPE) nanocomposite under DC voltage application, the volume resistivity, the space charge distribution and the breakdown strength were investigated. By the addition of nano-sized MgO filler, both the DC breakdown strength and the volume resistivity of LDPE increased. At the average DC electric field of about 85 kV/mm and more, a positive packet space charge was observed in LDPE without MgO nano-filler, whereas a little homogeneous space charge was observed in MgO/LDPE nanocomposite material at the front of electrode. From these results, it is confirmed that the addition of MgO nano-filler leads to the improvement of DC electrical insulating properties of LDPE.  相似文献   

5.
Electroluminescence (EL) excitation mechanisms have been investigated in epoxy resin under divergent and uniform field situations. Metallic wires embedded in the resin were used to produce field divergence whereas film samples were metallised to obtain a uniform field. EL under divergent field was stimulated by a pulse voltage. Light was emitted on the positive and negative fronts of the pulses when the field exceeded 20 kV/mm at the wire surface, with equal intensity and without polarity dependence. There was evidence of space charge accumulation around the wires in multiple-pulse experiments. Charge injection and extraction occurring at both fronts of the pulse provide the condition for EL excitation. Further excitation of the EL during the plateau of the voltage pulse is prevented by the opposite field of the trapped charge. Field computation with and without space charge supports the proposed interpretation. A dc voltage was used for the uniform field experiments. A continuous level of EL is found at 175 kV/mm. Charging/discharging current measurements and space charge profile analyses using the pulsed electroacoustic (PEA) technique were performed at different fields up to the EL level. Dipolar orientation generates a long lasting transient current that prevents the conduction level being reached within the experimental protocol (one hour poling time). The continuous EL emission is nevertheless associated with a regime where the conduction becomes dominant over the orientational polarization. Polarization and space charge contribute to the PEA charge profiles. Homocharge injection at anode and cathode is seen at 20 kV/mm and a penetration of positive space charge in the bulk is detected above 100 kV/mm, suggesting an excitation of the continuous EL by bipolar charge recombination  相似文献   

6.
Packet-like space-charge behavior in polyethylene for cable insulation was studied by utilizing the laser-induced pressure-pulse technique. Space charge observation under various conditions showed that the charge packet was formed in the specimen doped with antioxidant, especially when the specimen is oxidized. Periodic formation and transport of charge packets led to a small current oscillation. The charge packet seemed to be formed in the bulk, and the internal field of 1.2 to 1.4 MV/cm, in the region where the packet was formed was periodically enhanced from 2 to 2.5 MV/cm by space-charge accumulation. This suggests that the packet formation is caused by carrier generation under the highly enhanced field. The antioxidant deteriorated by oxidation was shown to be a possible origin of the carrier generation  相似文献   

7.
Space charge distribution was measured, applying an electric field of >1 MV/cm to 3 mm thick XLPE cable insulation. Improving the conventional pulse electro-acoustic method, a new method was developed to measure space charge when applying HV to cables. Under high field, hetero charges were formed soon after voltage application, followed by an injection from the cathode. Then intermittent injections of charge packets from the anode took place. The space charge distribution kept changing without becoming stabilized. A simulation was done assuming hysteresis of the injection characteristics. The observed intermittent injection near the anode was qualitatively reproduced using computer simulation  相似文献   

8.
硅橡胶中空间电荷的形成机理   总被引:8,自引:9,他引:8  
文中采用电声脉冲法,在不同的直流电场作用下,测量了硅橡胶中空间电荷的分布,并分析了其与加压时间的关系。同时测量了短路电极时空间电荷分布的变化,讨论了电极短路试样中残留电荷的分布及其影响。研究发现,在场强相对较低(5kV/mm)与较高(60kV/mm,70kV/mm)时,电极附近介质中的电荷分布均为异极性电荷,但其形成机理完全不同;而在中场强(10kV/mm,30kV/mm)下可出现同极性电荷。文章还讨论了Al和Cu电极在不同电场强度下的电子或空穴注入现象以及其在空间电荷形成中的作用。  相似文献   

9.
The influence of high electrical DC fields (>20 kV/mm) on aging, polarization and on the morphology of polyethylene (PE) is discussed. Infrared and positron annihilation spectroscopy measurements as well as capacitance measurements tend to suggest that the polymer morphology is modified by high fields. The author shows that the accelerated electrical aging characteristics of PE are linked directly to the morphology changes induced by the field. Below a so-called critical field, the activation volume of the aging process is dependent on the field-induced strain. Above the critical field, the amorphous phase is deformed significantly, and weak van der Waals bonds are broken, leading to another, faster, aging regime. There is an excellent agreement between the proposed model and experimental data obtained with various PE samples. The possible relation between the submicrocavity formation proposed in his aging model and various polarization measurements is discussed. It is his contention that strong charge injection occurs only after submicrocavity formation, i.e. after weak bond breakage. As is well known, the polarization currents obtained under high fields are controlled by space charges. It seems that the wave packets and the negative resistance observed at >100 kV/mm in PE are associated with a steady state in field-induced defect formation. This suggests that space charges are related to the formation of submicrocavities and, therefore, are a consequence, not a cause, of high field aging.  相似文献   

10.
空间电荷对低密度聚乙烯电气击穿特性的影响   总被引:5,自引:3,他引:2  
为解决聚乙烯用作电线电缆绝缘材料时所受空间电荷问题的困扰,采用在低密度聚乙烯(low density po-lyethylene,LDPE)试品上施加直流预电压使其中积聚一定量的空间电荷,然后测量试品击穿强度的方法,研究了空间电荷对LDPE击穿特性的影响。结果表明,与未经过预电压处理的LDPE的击穿强度相比,在经过较低场强(50 kV/mm)预电压处理后,预电压与击穿电压极性相同时击穿强度提高了约9%,极性相异时击穿强度降低约14%;而经过较高场强(150 kV/mm)预电压处理后,预电压时LDPE中出现空间电荷包现象,预电压后同极性击穿强度提高约19%,而异极性击穿强度反而上升约16%。分析认为空间电荷包在LDPE中的运动导致了部分空间电荷的中和,使得空间电荷积聚量减少,同时LDPE中可能的缺陷得到了一定程度的老炼而使介质得到了均匀化,从而使LDPE的击穿强度得到了提高。  相似文献   

11.
The effects of 5% wt BaTiO3 additive and of electrode material on space charge formation and electric field distribution in low density polyethylene (LDPE) were investigated using a thermal step technique. Space charge was formed at an average dc field of ~28 kV/mm and at 50°C. Results indicate that the addition of BaTiO3 to LDPE has considerably reduced the remanent space charge and electric field and changed their distribution patterns in the doped material when compared with the plain material. It is also shown that the remanent space charge and electric field in plain LDPE are strongly dependent on the type of electrode material  相似文献   

12.
This report deals with space charge behavior in PE (polyethylene) under dc fields. Direct observation of time-dependent space charge profiles in 3-mm thick XLPE (crosslinked low-density polyethylene) cable insulation under dc electric fields was performed using the pulsed electroacoustic method. Stable hetero charges were formed when the field was as low as 0.2 MV/cm, and intermittent generation of packet shaped space charges and their propagation through the insulation were observed when the field was as high as 0.7 MV/cm. These phenomena were reproduced in sheet specimens of XLPE and LDPE (low-density polyethylene). It was found that hetero charges resulted from heat treatment of the XLPE specimen containing antioxidant and acetophenone, which is one of the crosslinking by-products, suggesting dissociation of the antioxidant through solvation at high temperature by acetophenone. The packet charges were easily detected when acetophenone was diffused into the LDPE specimen. However, uniformity of acetophenone distribution prevented the packet charge generation. It is suggested on the basis of several experimental results that local ionization of impurities in the insulation through solvation by acetophenone takes place assisted by high field and leads to the packet charge generation. A numerical simulation was carried out based on the above model  相似文献   

13.
Electrical conductivity (DC) and space charge accumulation were studied in samples of low density polyethylene to which nano-sized and micro-sized TiO/sub 2/ (anatase) particles and a dispersant had been added. Sample thicknesses were in the range 150-200 /spl mu/m. At applied field strengths of 10 and 20 kV/mm, the conductivity at 30 /spl deg/C, measured in vacuum in samples containing 10 % w/w nano-sized TiO/sub 2/, decreased by 1-2 orders of magnitude relative to samples with dispersant but without TiO/sub 2/, and by three orders of magnitude at 70 /spl deg/C. In air at 30 /spl deg/C the corresponding decrease was an order of magnitude at 10 kV/mm, and a factor of four at 20 kV/mm. In samples containing 10 % w/w micro-sized TiO/sub 2/ the conductivity increased in air and in vacuum, but only by factors in the range 2-10 depending on temperature and field. Space charge profiles were obtained using the laser-intensity-modulation-method (LIIMM), irradiating both surfaces of the sample. The micro-sized TiO/sub 2/ particles are associated with increased charge injection from the electrodes and increased charge trapping in the sample bulk, increasing the conductivity overall. The nano-sized particles generate very little charge in the sample bulk, but render the electrodes partially-blocking and so lower the conductivity.  相似文献   

14.
Space charge formation and its increase with field under DC conditions is not a mystical phenomenon. The increase in space charge with applied field is an obvious and inevitable result of the interaction of field-dependent current density with spatially inhomogeneous resistivity. For common polymeric dielectrics, the current density makes a transition from a linear function of field to an exponential function of field at around 10 kV/mm. This causes a similar transition in the sample space charge in the same field region. However, this transition has no obvious connection with aging, and if it does prove to have a connection, the driving force is the rapidly increasing current density and not the space charge, which is a result thereof. As to the issue of the accuracy of space charge measurements, it may be more important to focus on providing a physical mechanism for 1-eV deep traps at an average separation of 3 nm within a polymeric dielectric. This would bring about the ability to engineer important dielectric properties as well as improved understanding of the physical basis of aging and other important phenomena in dielectrics.  相似文献   

15.
A semi-empirical model for high-field conduction in polyethylene is developed on the basis of data in the literature for ac conductivity in the range of 30 to 60 kV/mm and `charge injection' from a needle in the range of 160 kV/mm. The model is used to compute high-field conduction-related phenomena by solving Poisson's equation with field-dependent conductivity and time-dependent applied voltage for a highly inhomogeneous field geometry. Parameters computed include field, current density, charge density, power density, and force density. Temperature rise in the dielectric is estimated based on the computed power density  相似文献   

16.
In the presence of a stress enhancement, a lightning surge causes space charge formation and power dissipation which can result in substantial temperature rises in dielectrics. Poisson's equation and the thermal diffusion equation have been solved in 2D with field-dependent material parameters to compute temperature rises of over 80 K during a 100 ns risetime surge which produces a background field of 40 kV/mm applied to a 100 μm protrusion with a 0.5 μm tip radius. Such a temperature rise could play a major role in the lightning-induced conversion of water trees to electrical trees  相似文献   

17.
Space charge dynamics in low-density polyethylene (LDPE) films were observed by the pulsed electroacoustic (PEA) method during breakdown tests at various temperatures. In order to investigate the intrinsic electrical breakdown, the applied electric field was increased to 300 kV/mm in 150 ms, and kept constant until breakdown of the specimens, or 300 ms at the longest. Space charge profiles were measured at 1 ms intervals. A significant positive charge propagating into the sample was observed only immediately before the breakdown at 90°C. These measurements revealed that the positive charge behavior is strongly related to the breakdown phenomena  相似文献   

18.
An investigation of the HV vacuum breakdown between polished, powder coated, and e-beam treated 304L and 316L stainless steel electrodes is described. Tests were performed with 160 ns, 1-cos(/spl omega/t), and 260 ns flat-top voltage pulses of up to 500 kV. The high voltage hold-off for the 160 ns pulse was /spl sim/130 kV/mm for 2 mm gaps for 80-mm diameter polished stainless steel electrodes, and 15% lower for 120-mm polished and e-beam treated electrodes. The longer 260 ns pulse gave 15% lower hold-off for 80-mm electrodes. These electrodes showed voltage hold-off that scaled as the square root of the gap between 0.5 and 7 mm. This total voltage effect has been interpreted in the past as due to accelerated particles. We analyze our data in terms of this mechanism and show that only nanoparticles of molecular size could be responsible. We also discuss how ions or background gas could affect the breakdown thresholds but existing models do not predict square root dependence. We test how extremely fine powers affect hold-off and show that contaminated surfaces have relatively constant reduced breakdown E-fields that intersect the clean-electrode voltage-dependent breakdown at critical gaps defined by the type and quantity of contamination. The hold-off was /spl sim/55 and 65 kV/mm with copper powder on the cathode and anode for 2 to 6.5 mm gaps, respectively, and /spl sim/95 and 75 kV/mm for talc powder on the cathode and anode for gaps <3.5 and 6.5 mm. Optical diagnostics show no difference in the light emission from clean and contaminated electrode breakdown arcs.  相似文献   

19.
Simultaneous measurements of space charge and external current were carried out using a PEA measurement system with an electrometer on the back of a grounding electrode in order to clarify the physical situation of a huge packet of positive space charges in LDPE films. A large number of positive charges from a semiconducting anode were accumulated at the interface between LDPE and an Al‐cathode at a mean applied field of 1.5 MV/cm and then finally disappeared. The results of simultaneous measurements showed that the external current kept a relatively high value during charge accumulation and further increased when the charges disappeared. Both the charge dynamics and the external current were restricted by addition of a low‐molecular‐weight paraffin wax, indicating that carrier transport was influenced by the microstructure of the polymer. The dynamics of the residual charges after short‐circuiting is also discussed. © 2012 Wiley Periodicals, Inc. Electr Eng Jpn, 179(4): 10–17, 2012; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21256  相似文献   

20.
Streamer discharges in tap water and distilled water have been generated by applying a voltage pulse from 120 to 175 kV and 500 ns duration to a wire-to-electrode configuration. Electrical and optical diagnostics were used to explore the temporal development of the streamers in tap and distilled water, at various applied voltages and both polarities. With the wire serving as anode, multiple, parallel streamer discharges were generated. The number density of these streamers along the wire decreases with decreasing electric field on the surface of the wire. The dependence of the streamer density on electric field indicates the role of field enhancement at inhomogeneous microstructures along the wire as streamer initiation mechanism. The appearance of the discharge was different for tap and distilled water. However, the measured average streamer propagation velocity from the positive wire to the grounded plane electrode, of 32 mm//spl mu/s, was independent of the water conductivity and the applied voltage. This suggests the existence of a self-sustained electric field at the streamer head. With the wire serving as cathode, only a weak light emission from the area close to the wire was observed, and streamers did not appear for the same voltage amplitude as with the positive polarity. This suggests that an ionic current flowing in the water is not dominant in the streamer propagation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号