首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is a need to develop routine and rugged methods for the characterization of oil sands naphthenic acids present in natural waters and contaminated soils. Mass spectra of naphthenic acids, obtained using a variant of electrospray ionization coupled with a Fourier transform ion cyclotron resonance mass spectrometer, are shown here to vary greatly, reflecting their dependence on solubilities of the acids in organic solvents. The solubilities of components in, for example, 1-octanol (similar solvent to fatty tissue) compared to polar solvents such as methanol or acetonitrile are used here as a surrogate to indicate the more bioavailable or toxic components of naphthenic acids in natural waters. Monocarboxylic compounds (CnH2n+zO2) in the z=-4, -6, and -12 (2-, 3-, and 6-ring naphthenic acids, respectively) family in the carbon number range of 13-19 were prevalent in all solvent systems. The surrogate method is intended to serve as a guide in the isolation of principle toxic components, which in turn supports efforts to remediate oil sands contaminated soils and groundwater.  相似文献   

2.
Ambient ionization imaging mass spectrometry is uniquely suited for detailed spatially resolved chemical characterization of biological samples in their native environment. However, the spatial resolution attainable using existing approaches is limited by the ion transfer efficiency from the ionization region into the mass spectrometer. Here, we present a first study of ambient imaging of biological samples using nanospray desorption ionization (nano-DESI). Nano-DESI is a new ambient pressure ionization technique that uses minute amounts of solvent confined between two capillaries comprising the nano-DESI probe and the solid analyte for controlled desorption of molecules present on the substrate followed by ionization through self-aspirating nanospray. We demonstrate highly sensitive spatially resolved analysis of tissue samples without sample preparation. Our first proof-of-principle experiments indicate the potential of nano-DESI for ambient imaging with a spatial resolution of better than 12 μm. The significant improvement of the spatial resolution offered by nano-DESI imaging combined with high detection efficiency will enable new imaging mass spectrometry applications in clinical diagnostics, drug discovery, molecular biology, and biochemistry.  相似文献   

3.
The distribution of metal species in solution was determined using flow injection electrospray ionization mass spectrometry. Complexes formed by selected metal ions with added organic ligands in 50:50 water/acetonitrile and 50:50 water/methanol under acidic, neutral, and basic conditions were detected using electrospray ionization conditions optimized to best represent solution-phase interactions. Metal species containing acetate, nitrate, and solvent molecules predominated in acidic solution but became less abundant at higher pH. Interactions between metal ions and added organic ligands became more selective with increasing pH, showing the expected preference of hard and soft ligands for metal ions of the corresponding type. Species distributions also tended toward larger complexes as pH increased. Overall ion yield was greater for aqueous acetonitrile than for aqueous methanol solutions; however, reduction of copper(II) in aqueous acetonitrile resulted in the detection of copper(I) complexes for certain ligands. Experimental results for copper(II) and 8-hydroxyquinoline in 50:50 water/methanol showed good agreement with aqueous speciation predicted using the thermodynamic equilibrium model MINEQL. Detection of neutral complexes was achieved by protonation, deprotonation, or electrochemical oxidation during electrospray.  相似文献   

4.
Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies have shown that LSOA constituents are multifunctional compounds containing at least one aldehyde or ketone groups. In this study, we used the selectivity of the Girard's reagent T (GT) toward carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 μM GT solutions were used as the working solvents for reactive nano-DESI analysis. Abundant products from the single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 μM. We found that LSOA dimeric and trimeric compounds react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in the formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the time scale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at the ~0.5 pg level and the total amount of dimers and trimers in the analyzed sample was ~11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and for the quantification of compounds possessing these groups in complex mixtures.  相似文献   

5.
Hsu HJ  Kuo TL  Wu SH  Oung JN  Shiea J 《Analytical chemistry》2005,77(23):7744-7749
Rapid characterization of synthetic polymers based on the differences in the appearance of the polar pyrolysate ions was achieved by electrospray-assisted pyrolysis ionization-mass spectrometry. The pyrolytical products produced by a commercial Curie point pyroprobe were conducted to the tip of a capillary, where charged methanol droplets were generated continuously by electrospray. Polar components in the pyrolysates may react directly with the protonated methanol ions or fuse with the charged methanol droplets; electrospray ionization proceeds from the fused droplets to generate protonated analyte ions. The mass spectra obtained through this approach were used to rapidly distinguish the polymer standards that differ in the nature of building units, degrees of polymerization, and copolymerization coefficients.  相似文献   

6.
Electrospray-assisted laser desorption/ionization (ELDI) combined with mass spectrometry allows chemical and biochemical compounds to be characterized directly from hydrophilic and hydrophobic organic solutions mixed with carbon powders under ambient conditions. Organic and inorganic compounds dissolved in polar or nonpolar solvent such as methanol, tetrahydrofuran, ethyl acetate, toluene, dichloromethane, or hexane can be detected using this ambient ionization technique without prior pretreatment. We have used this technique to monitor the progress in several ongoing reactions: the epoxidation of chalcone in ethanol, the chelation of ethylenediaminetetraacetic acid with copper and nickel ions in aqueous solution, the chelation of 1,10-phenanthroline with iron(II) in methanol, and the tryptic digestion of cytochrome c in aqueous solution. Liquid-ELDI analyses simply require irradiation of the surface of the sample solution with a pulsed ultraviolet laser; the laser energy is adsorbed by the carbon powder presuspended in the sample solution; the absorbed laser energy is then transferred to the surrounding solvent and to the analyte molecules in the solution, leading to their desorption; the desorbed gaseous analyte molecules are then postionized within an electrospray (ESI) plume to generate ESI-like analyte ions.  相似文献   

7.
The ionization mechanism in dopant-assisted atmospheric pressure photoionization and the effect of solvent on the ionization efficiency was studied using 7 naphthalenes and 13 different solvent systems. The ionization efficiency was 1-2 orders of magnitude higher with dopant than without, indicating that the photoionization of the dopant initiates the ionization process. In positive ion mode, the analytes were ionized either by charge exchange or by proton transfer. Charge exchange was favored for low proton affinity solvents (water, hexane, chloroform), whereas the addition of methanol or acetonitrile to the solvent initiated proton transfer. In negative ion mode, the compounds with high electron affinity were ionized by electron capture or by charge exchange and the compounds with high gas-phase acidity were ionized by proton transfer. In addition, some oxidation reactions were observed. All the reactions leading to ionization of analytes in negative ion mode are initiated by thermal electrons formed in photoionization of toluene. The testing of different solvents showed that addition of buffers such as ammonium acetate, ammonium hydroxide, or acetic acid may suppress ionization in APPI. The reactions are discussed in detail in light of thermodynamic data.  相似文献   

8.
Wang J  Chen R  Ma M  Li L 《Analytical chemistry》2008,80(2):491-500
Recently developed sample preparation techniques employing hydrophobic sample support have improved the detection sensitivity and mass spectral quality of matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). These methods concentrate the samples on target by minimizing the sample area via the solvent repellent effect of the target surface. In the current study, we employed the use of paraffin wax film (Parafilm M) for improved MALDI MS analysis of low-abundance peptide mixtures, including neuronal tissue releasate and protein tryptic digests. This thin film was found to strongly repel polar solvents including water, methanol, and acetonitrile, which enabled the application of a wide range of sample preparation protocols that involved the use of various organic solvents. A "nanoliter-volume deposition" technique employing a capillary column has been used to produce tiny ( approximately 400 microm) matrix spots of 2,5-dihydroxybenzoic acid on the film. By systematically optimizing the sample volume, solvent composition, and film treatment, the Parafilm M substrate in combination with the nanoliter-volume matrix deposition method allowed dilute sample to be concentrated on the film for MALDI MS analysis. Peptide mixtures with nanomolar concentrations have been detected by MALDI time-of-flight and MALDI Fourier transform ion cyclotron resonance mass spectrometers. Overall, the use of Parafilm M enabled improved sensitivity and spectral quality for the analysis of complex peptide mixtures.  相似文献   

9.
Robb DB  Blades MW 《Analytical chemistry》2006,78(23):8162-8164
Atmospheric pressure photoionization can provide high ionization efficiency simultaneously to both polar and nonpolar compounds delivered in reversed-phase solvent. The method to achieve this utilizes toluene as a dopant and simply requires that the solvent flow be limited so that reactions between toluene photoions and the organic component of the solvent are not driven to completion. Under these conditions, toluene photoions remain in the source for ionizing nonpolar compounds via charge exchange (electron transfer), while protonated solvent ions are available for proton-transfer reactions with polar molecules. The reagent ion mixture is then suitable for ionizing a wide range of both polar and nonpolar compounds. The critical effect of solvent flow rate is demonstrated here with results for a test analyte, 9-methylanthracene, which may be ionized by either charge exchange or proton transfer. For a solvent of 50:50 methanol/water (v/v), lowering the flow from 200 to 50 microL min-1 results in a 10x increase in charge exchange ionization efficiency--further flow reductions provide even greater enhancements. This method is compatible with sample delivery by direct infusion and micro- and narrow-bore LC, as well as conventional LC using a flow splitter.  相似文献   

10.
An improved approach for the direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis of vegetable oils is described. The more polar components of the oils, including the fatty acids, are simply extracted with methanol/water (1:1) solution and analyzed by direct infusion ESI-MS in both the negative and positive ion modes. This fingerprinting analysis was applied to genuine samples of olive, soybean, corn, canola, sunflower, and cottonseed oil, to admixtures of these oils, and samples of aged soybean oil. ESI-MS fingerprints in the positive ion mode of the extracts divide the oils into well-defined groups, as confirmed by principal component analysis, whereas ESI-MS fingerprints in the negative ion mode clearly differentiate olive oil from the five other refined oils. The method is also shown to detect aging and adulteration of vegetable oils.  相似文献   

11.
The coupling of a rotation planar preparative thin-layer chromatography system on-line with mass spectrometry is demonstrated using a simple plumbing scheme and a self-aspirating heated nebulizer probe of a corona discharge atmospheric pressure chemical ionization source. The self-aspiration of the heated nebulizer delivers approximately 20 microL/min of the 3.0 mL/min eluate stream to the mass spectrometer, eliminating the need for an external pump in the system. The viability of the coupling is demonstrated with a three-dye mixture composed of fat red 7B, solvent green 3, and solvent blue 35 separated and eluted from a silica gel-coated rotor using toluene. The real-time characterization of the dyes eluting from the rotor is illustrated in positive ion full-scan mode. Other self-aspirating ion source systems including atmospheric pressure photoionization, electrospray ionization, and inductively coupled plasma ionization, for example, might be configured and used in a similar manner coupled to the chromatograph to expand the types of analytes that could be ionized, detected, and characterized effectively.  相似文献   

12.
Cellular metabolome analysis by chromatography-mass spectrometry (MS) requires prior metabolite extraction. We examined a diversity of solvent systems for extraction of water-soluble metabolites from Escherichia coli. Quantitative yields of approximately 100 different metabolites were measured by liquid chromatography-tandem MS and displayed in clustered heat map format. Many metabolites, including most amino acids and components of central carbon metabolism, were adequately extracted by a broad spectrum of solvent mixtures. For nucleotide triphosphates, however, mixtures of acidic (0.1 M formic acid-containing) acetonitrile/water (80:20) or acetonitrile/methanol/water (40:40:20) gave superior triphosphate yields. Experiments involving isotopic tracers revealed that the improved triphosphate yields in the acidic acetonitrile were in part due to reduced triphosphate decomposition, which is a major problem when extracting with other solvent systems such as methanol/water. We recommend acidic solvent mixtures containing acetonitrile for extraction of the E. coli metabolome.  相似文献   

13.
A comprehensive analytical method based on reversed-phase liquid chromatography and mass spectrometry using both atmospheric pressure chemical ionization and electrospray ionization has been developed for the simultaneous determination of anionic and nonionic surfactants, their polar degradation products, and endocrine-disrupting compounds (EDCs) in sewage sludge. Extraction of target compounds, with recovery rates from 86% to nearly 100% for polyethoxylates and from 84 to 94% for polar degradation products, was achieved applying ultrasonic solvent extraction with a mixture of methanol/ dichloromethane (7:3, v/v). Cleanup of sample extracts was performed on octadecyl solid-phase extraction cartridges. Determination of less polar compounds: alcohol ethoxylates (AEOs), nonylphenol ethoxylates (NPEOs), coconut diethanol amides, poly(ethylene glycol)s, and phthalate esters was accomplished by reversed-phase LC-APCI-MS in positive ionization mode, while more polar compounds: nonylphenolcarboxylates, nonylphenol (NP), octylphenol, and bisphenol Awere analyzed by ion-pair LC-ESI-MS under negative ionization conditions. This protocol was successfully applied to the trace determination of anionic and nonionic surfactants, polar degradation products, and EDCs in sewage sludge collected from different sewage treatment plants. The analysis revealed the presence of NP at high concentration levels ranging from 25 to 600 mg/kg. Polyethoxylates (AEOs and NPEOs) were also found in all samples at parts-per-million levels (10-190 mg/kg AEOs and 2-135 mg/kg NPEOs, respectively).  相似文献   

14.
Atmospheric pressure photoionization (APPI) was evaluated for the analysis of fullerenes. An important response improvement was found when using toluene mediated APPI in negative mode if compared with other atmospheric pressure ionization (API) sources (electrospray and atmospheric pressure chemical ionization). Fullerene APPI negative mass spectra were dominated by the isotopic cluster of the molecular ion, although isotopic patterns for M+1, M+2, and M+3 ions showed higher than expected relative abundances. These discrepancies are explained by the presence of two isobaric ions, one due to (13)C and the other due to the addition of hydrogen to a double bond of the fullerene structure. Triple quadrupole tandem mass spectrometry, ultrahigh resolution mass spectrometry, and accurate mass measurements were used to confirm these assignments. Additionally, cluster ions M+16 and M+32 were characterized following the same strategy. Ions due to the addition of oxygen and alkyl additions were attributed to the presence of methanol in the mobile phase. For the fast chromatographic separation of fullerenes (less than 3.5 min), a sub-2 μm C18 column and isocratic elution (toluene/methanol, 45:55 v/v) was used. Highly selective-selected ion monitoring (H-SIM) mode (mass resolving power, >12,500 fwhm) was proposed monitoring the two most intense isotope ions in the [M](-?) cluster. Method limits of quantitation down to 10 pg L(-1) for C(60) and C(70) fullerenes and between 0.75 and 5.0 ng L(-1) for larger fullerenes were obtained. Finally, the ultrahigh performance liquid chromatography (UHPLC)-APPI-MS method was used to analyze fullerenes in river and pond water samples.  相似文献   

15.
The lower limit of detection for low molecular weight polar and ionic analytes using electrospray ionization-mass spectrometry (ESI-MS) is often severely compromised by an intense background that obscures ions of trace components in solution. Recently, a new technique, referred to as high-field asymmetric waveform ion mobility spectrometry (FAIMS), has been shown to separate gas-phase ions at atmospheric pressure and room temperature. A FAIMS instrument is an ion filter that may be tuned, by control of electrical voltages, to continuously transmit selected ions from a complex mixture. This capability offers significant advantages when FAIMS is coupled with ESI, a source that generates a wide variety of ions, including solvent clusters and salt adducts. In this report, the tandem arrangement of ESI-FAIMS-MS is used for the analysis of haloacetic acids, a class of disinfection byproducts regulated by the US EPA. FAIMS is shown to effectively discriminate against background ions resulting from the electrospray of tap water solutions containing the haloacetic acids. Consequently, mass spectra are simplified, the selectivity of the method is improved, and the limits of detection are lowered compared with conventional ESI-MS. The detection limits of ESI-FAIMS-MS for six haloacetic acids ranged between 0.5 and 4 ng/mL in 9:1 methanol/tap water (5 and 40 ng/mL in the original tap water samples) with no preconcentration, derivatization, or chromatographic separation prior to analysis.  相似文献   

16.
Desorption electrospray ionization (DESI) allows mass spectrometry to be used for on-line high-throughput monitoring of pharmaceutical samples in the ambient environment, without prior sample preparation. Positive and negative ion DESI are used to characterize the active ingredients in pharmaceutical samples formulated as tablets, ointments, and liquids. Compounds of a wide variety of chemical types are detected in these complex matrices. The effects on analytical performance of operating parameters, including the electrospray high voltage, heated capillary temperature, solvent infusion rate, and solvent composition, are evaluated and optimized. In addition to experiments in which a simple solvent is sprayed onto the solid analyte samples, reactive desorption is performed by adding reagents to the solvent spray to generate particularly stable or characteristic ions with the analytes of interest. A variable-speed moving belt was built for high-throughput sampling and used to provide rapid qualitative and semiquantitative information on drug constituents in tablets. Sampling rates as high as 3 samples/s are achieved in the ambient environment. Relative standard deviations of the relative ion abundances for major components in the mass spectra are in the range of 2-8%. Impurities and components present at levels as low as approximately 0.1% are identified and carryover effects are minimized in high-throughput on-line analysis of pharmaceutical samples.  相似文献   

17.
A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production.  相似文献   

18.
A new inlet ionization method requiring no voltage or laser, and using water, methanol, or water/organic solvent mixtures, is shown to produce mass spectra similar to those obtained with electrospray ionization (ESI) for small molecules, peptides, and proteins, at least as large as carbonic anhydrase, with sensitivity that surpasses ESI. With the use of wide mass range acquisitions at 100,000 mass resolution on an Orbitrap Exactive, detection limits below parts per trillion are obtained for small molecules such as arginine, ciprofloxacin, and acetaminophen. Low attomoles of bovine insulin consumed produced a multiply charged mass spectrum. Ions are generated, even using pure water as solvent, within the heated inlet tube linking atmospheric pressure with the first vacuum stage of the Orbitrap Exactive. The extremely high sensitivity observed at this early stage of solvent assisted inlet ionization (SAII) development suggests that inlet ionization may surpass nanoelectrospray in sensitivity but without the need for extremely low solvent flows.  相似文献   

19.
Inlet ionization is a new approach for ionizing both small and large molecules in solids or liquid solvents with high sensitivity. The utility of solvent based inlet ionization mass spectrometry (MS) as a method for analysis of volatile and nonvolatile compounds eluting from a liquid chromatography (LC) column is demonstrated. This new LC/MS approach uses reverse phase solvent systems common to electrospray ionization MS. The first LC/MS analyses using this novel approach produced sharp chromatographic peaks and good quality full mass range mass spectra for over 25 peptides from injection of only 1 pmol of a tryptic digest of bovine serum albumin using an eluent flow rate of 55 μL min(-1). Similarly, full acquisition LC/MS/MS of the MH(+) ion of the drug clozapine, using the same solvent flow rate, produced a signal-to-noise ratio of 54 for the major fragment ion with injection of only 1 μL of a 2 ppb solution. LC/MS results were acquired on two different manufacturer's mass spectrometers using a Waters Corporation NanoAcquity liquid chromatograph.  相似文献   

20.
Because of the wide range of chemically and structurally diverse metabolites, efforts to survey the complete metabolome rely on the implementation of multiplatform approaches based on nuclear magnetic resonance (NMR) and mass spectrometry (MS). Sample preparation disparities between NMR and MS, however, may limit the analysis of the same samples by both platforms. Specifically, deuterated solvents used in NMR strategies can complicate LC/MS analysis as a result of potential mass shifts, whereas acidic solutions typically used in LC/MS methods to enhance ionization of metabolites can severely affect reproducibility of NMR measurements. These intrinsically different sample preparation requirements result in the application of different procedures for metabolite extraction, which involve additional sample and unwanted variability. To address this issue, we investigated 12 extraction protocols in liver tissue involving different aqueous/organic solvents and temperatures that may satisfy the requirements for both NMR and LC/MS simultaneously. We found that deuterium exchange did not affect LC/MS results, enabling the measurement of metabolites by NMR and, subsequently, the direct analysis of the same samples by using LC/MS with no need for solvent exchange. Moreover, our results show that the choice of solvents rather than the temperature determined the extraction efficiencies of metabolites, a combination of methanol/chloroform/water and methanol/water being the extraction methods that best complement NMR and LC/MS analysis for metabolomic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号