首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single 3-V only, 1-Gb NAND flash memory has been successfully developed. The chip has been fabricated using 0.13-/spl mu/m CMOS STI technology. The effective cell size including the select transistors is 0.077 /spl mu/m/sup 2/. To decrease the chip size, a new architecture is introduced. The in-series connected memory cells are increased from 16 to 32. Furthermore, as many as 16 k memory cells are connected to the same wordline. As a result, the chip size is decreased by 15%. A very small die size of 125 mm/sup 2/ and an excellent cell area efficiency of 70% are achieved. As for the performance, a very fast programming and serial read are realized. The highest program throughput ever of 10.6-MByte/s is realized: 1) by quadrupling the page size and 2) by newly introducing a write cache. In addition, the garbage collection is accelerated to 9.4-MByte/s. In addition, the write cache accelerates the serial read operation and a very fast 20-MByte/s read throughput is realized.  相似文献   

2.
For a quantum step in further cost reduction, the multilevel cell concept has been combined with the NAND flash memory. Key requirements of mass storage, low cost, and high serial access throughput have been achieved by sacrificing fast random access performance. This paper describes a 128-Mb multilevel NAND flash memory storing 2 b per cell. Multilevel storage is achieved through tight cell threshold voltage distribution of 0.4 V and is made practical by significantly reducing program disturbance by using a local self-boosting scheme. An intelligent page buffer enables cell-by-cell and state-by-state program and inhibit operations. A read throughput of 14.0 MB/s and a program throughput of 0.5 MB/s are achieved. The device has been fabricated with 0.4-μm CMOS technology, resulting in a 117 mm2 die size and a 1.1 μm2 effective cell size  相似文献   

3.
The authors demonstrate high-performing n-channel transistors with a HfO/sub 2//TaN gate stack and a low thermal-budget process using solid-phase epitaxial regrowth of the source and drain junctions. The thinnest devices have an equivalent oxide thickness (EOT) of 8 /spl Aring/, a leakage current of 1.5 A/cm/sup 2/ at V/sub G/=1 V, a peak mobility of 190 cm/sup 2//V/spl middot/s, and a drive-current of 815 /spl mu/A//spl mu/m at an off-state current of 0.1 /spl mu/A//spl mu/m for V/sub DD/=1.2 V. Identical gate stacks processed with a 1000-/spl deg/C spike anneal have a higher peak mobility at 275 cm/sup 2//V/spl middot/s, but a 5-/spl Aring/ higher EOT and a reduced drive current at 610 /spl mu/A//spl mu/m. The observed performance improvement for the low thermal-budget devices is shown to be mostly related to the lower EOT. The time-to-breakdown measurements indicate a maximum operating voltage of 1.6 V (1.2 V at 125 /spl deg/C) for a ten-year lifetime, whereas positive-bias temperature-instability measurements indicate a sufficient lifetime for operating voltages below 0.75 V.  相似文献   

4.
An 8-Gb multi-level NAND Flash memory with 4-level programmed cells has been developed successfully. The cost-effective small chip has been fabricated in 70-nm CMOS technology. To decrease the chip size, a one-sided pad arrangement with compacted core architecture and a block address expansion scheme without block redundancy replacement have been introduced. With these methods, the chip size has been reduced to 146 mm/sup 2/, which is 4.9% smaller than the conventional chip. In terms of performance, the program throughput reaches 6 MB/s at 4-KB page operation, which is significantly faster than previously reported and very competitive with binary Flash memories. This high performance has been achieved by the combination of the multi-level cell (MLC) programming with write caches and with the program voltage compensation technique for neighboring select transistors. The read throughput reaches 60 MB/s using 16I/O configuration.  相似文献   

5.
Emerging application areas of mass storage flash memories require low cost, high density flash memories with enhanced device performance. This paper describes a 64 Mb NAND flash memory having improved read and program performances. A 40 MB/s read throughput is achieved by improving the page sensing time and employing the full-chip burst read capability. A 2-μs random access time is obtained by using a precharged capacitive decoupling sensing scheme with a staggered row decoder scheme. The full-chip burst read capability is realized by introducing a new array architecture. A narrow incremental step pulse programming scheme achieves a 5 MB/s program throughput corresponding to 180 ns/Byte effective program speed. The chip has been fabricated using a 0.4-μm single-metal CMOS process resulting in a die size of 120 mm2 and an effective cell size of 1.1 μm2  相似文献   

6.
In a 0.13-/spl mu/m CMOS logic compatible process, a 256K /spl times/ 32 bit (8 Mb) local SONOS embedded flash EEPROM was implemented using the ATD-assisted current sense amplifier (AACSA) for 0.9 V (0.7 /spl sim/ 1.4 V) low V/sub CC/ application. Read operation is performed at a high frequency of 66 MHz and shows a low current of typically 5 mA at 66-MHz operating frequency. Program operation is performed for common source array with wide I/Os (/spl times/32) by using the data-dependent source bias control scheme (DDSBCS). This novel local SONOS embedded flash EEPROM core has the cell size of 0.276 /spl mu/m/sup 2/ (16.3 F/sup 2//bit) and the program and erase time of 20 /spl mu/s and 20 ms, respectively.  相似文献   

7.
A 1.8-V 2-Gb NAND flash memory has been successfully developed on a 90-nm CMOS STI process technology, resulting in a 141-mm/sup 2/ die size and a 0.044-/spl mu/m/sup 2/ effective cell. For the higher level integration, critical layers are patterned with KrF photolithography. The device has three notable differences from previous generations. 1) The cells are organized in a single (16K+512) column and 128K row array by adopting a one-sided row decoder in order to minimize the die size. 2) The bitline precharge level is set to 0.9 V in order to increase on-cell current. 3) During the program operations, the string select line, which connects the NAND cell strings to the bitlines, is biased with sub-V/sub CC/ in order to avoid program disturbance issues.  相似文献   

8.
We present the first room-temperature continuous-wave operation of high-performance 1.06-/spl mu/m selectively oxidized vertical-cavity surface-emitting lasers (VCSEL's). The lasers contain strain-compensated InGaAs-GaAsP quantum wells (QW's) in the active region grown by metalorganic vapor phase epitaxy. The threshold current is 190 /spl mu/A for a 2.5/spl times/2.5 /spl mu/m/sup 2/ device, and the threshold voltage is as low as 1.255 V for a 6/spl times/6 /spl mu/m/sup 2/ device. Lasing at a wavelength as long as 1.1 /spl mu/m was also achieved. We discuss the wavelength limit for lasers using the strain-compensated QW's on GaAs substrates.  相似文献   

9.
A 1-/spl mu/m VLSI process technology has been developed for the fabrication of bipolar circuits. The process employs electron-beam slicing writing, plasma processing, ion implantation, and low-temperature oxidation/annealing to fabricate bipolar device structures with a minimum feature size of 0.9 /spl mu/m. Both nonisolated I/sup 2/L and isolated Schottky transistor logic (STL) devices and circuits have been fabricated with this process technology. The primary demonstration vehicle is a seated LSI, I/sup 2/L, 4-bit processor chip (SBP0400) with a minimum feature size of 1 /spl mu/m. Scaled SPB0400's have been fabricated that operate at clock speeds 3X higher than their full-size counterparts at 50-mA chip current. Average propagation delay has been measured as a function of minimum feature size for both I/sup 2/L and STL device designs. Power-delay products of 14 fJ for I/sup 2/L and 30 fJ for STL have been measured.  相似文献   

10.
A high-speed and high-sensitivity vertical indium-tin-oxide-InAlAs-InGaAs Schottky barrier photodetector has been designed, fabricated, and characterized. The devices had dark current densities as low as 8.87/spl times/10/sup -5/ A/cm/sup -2/ at an applied bias of 5 V. The responsivity for all the devices tested ranged from 0.55-0.60 A/W at a wavelength of 1.31 /spl mu/m, and 0.563-0.583 A/W at 1.55 /spl mu/m. The 15-/spl mu/m diameter devices exhibited a -3 dB bandwidth of 19 and 25 GHz at a wavelength of 1.55 /spl mu/m and an applied bias of 5 and 10 V, respectively. These are the best values of responsivity and bandwidth for a vertical InGaAs-based Schottky-barrier photodetector reported to date.  相似文献   

11.
A PLA of NAND structure, using a NMOS Si gate process, has been developed to minimize chip area and maintain medium fast speed. The smallest memory cell size of 7/spl times/9 /spl mu/m is achieved by using ion implantation for PLA bit programming with 4 /spl mu/m design rules. Dynamic clocking scheme and self-timing circuits which are used in this PLA are described. With PLA size at 20/spl times/20/spl times/20, transistor size of 8 /spl mu/m/4 /spl mu/m, and cell size of 7/spl times/12 /spl mu/m, an internal access time of 150 ns is achieved with an external 4 MHz clock. Measured circuit power dissipation is 20 mW under normal conditions.  相似文献   

12.
The design, fabrication and characterisation of a high performance 4H-SiC diode of 1789 V-6.6 A with a low differential specific-on resistance (R/sub SP/spl I.bar/ON/) of 6.68 m/spl Omega/ /spl middot/ cm/sup 2/, based on a 10.3 /spl mu/m 4H-SiC blocking layer doped to 6.6/spl times/10/sup 15/ cm/sup -3/, is reported. The corresponding figure-of-merit of V/sub B//sup 2//R/sub SP/spl I.bar/ON/ for this diode is 479 MW/cm/sup 2/, which substantially surpasses previous records for all other MPS diodes.  相似文献   

13.
A resonant tunneling quantum-dot infrared photodetector   总被引:3,自引:0,他引:3  
A novel device-resonant tunneling quantum-dot infrared photodetector-has been investigated theoretically and experimentally. In this device, the transport of dark current and photocurrent are separated by the incorporation of a double barrier resonant tunnel heterostructure with each quantum-dot layer of the device. The devices with In/sub 0.4/Ga/sub 0.6/As-GaAs quantum dots are grown by molecular beam epitaxy. We have characterized devices designed for /spl sim/6 /spl mu/m response, and the devices also exhibit a strong photoresponse peak at /spl sim/17 /spl mu/m at 300 K due to transitions from the dot excited states. The dark currents in the tunnel devices are almost two orders of magnitude smaller than those in conventional devices. Measured values of J/sub dark/ are 1.6/spl times/10/sup -8/ A/cm/sup 2/ at 80 K and 1.55 A/cm/sup 2/ at 300 K for 1-V applied bias. Measured values of peak responsivity and specific detectivity D/sup */ are 0.063 A/W and 2.4/spl times/10/sup 10/ cm/spl middot/Hz/sup 1/2//W, respectively, under a bias of 2 V, at 80 K for the 6-/spl mu/m response. For the 17-/spl mu/m response, the measured values of peak responsivity and detectivity at 300 K are 0.032 A/W and 8.6/spl times/10/sup 6/ cm/spl middot/Hz/sup 1/2//W under 1 V bias.  相似文献   

14.
We report an InP-InGaAs-InP double heterojunction bipolar transistor (DHBT), fabricated using a conventional triple mesa structure, exhibiting a 370-GHz f/sub /spl tau// and 459-GHz f/sub max/, which is to our knowledge the highest f/sub /spl tau// reported for a mesa InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The collector semiconductor was undercut to reduce the base-collector capacitance, producing a C/sub cb//I/sub c/ ratio of 0.28 ps/V at V/sub cb/=0.5 V. The V/sub BR,CEO/ is 5.6 V and the devices fail thermally only at >18 mW//spl mu/m/sup 2/, allowing dc bias from J/sub e/=4.8 mA//spl mu/m/sup 2/ at V/sub ce/=3.9 V to J/sub e/=12.5 mA//spl mu/m/sup 2/ at V/sub ce/=1.5 V. The device employs a 30 nm carbon-doped InGaAs base with graded base doping, and an InGaAs-InAlAs superlattice grade in the base-collector junction that contributes to a total depleted collector thickness of 150 nm.  相似文献   

15.
An analogue-to-digital converter (ADC) in a 0.5 /spl mu/m silicon-on-sapphire CMOS technology is reported. This innovative ADC uses a 2C-1C capacitor chain and a switched capacitor comparator. The ADC is capable of sampling at 409 kS/s, consuming 900 nW at 1.1 V power supply and 1.35 /spl mu/W at 1.5 V. It uses an active area of 300/spl times/700 /spl mu/m/sup 2/ and 640/spl times/1070 /spl mu/m/sup 2/ with pads.  相似文献   

16.
This letter reports a newly achieved best result on the specific ON-resistance (R/sub SP/spl I.bar/ON/) of power 4H-SiC bipolar junction transistors (BJTs). A 4H-SiC BJT based on a 12-/spl mu/m drift layer shows a record-low specific-ON resistance of only 2.9 m/spl Omega//spl middot/cm/sup 2/, with an open-base collector-to-emitter blocking voltage (V/sub ceo/) of 757 V, and a current gain of 18.8. The active area of this 4H-SiC BJT is 0.61 mm/sup 2/, and it has a fully interdigitated design. This high-performance 4H-SiC BJT conducts up to 5.24 A at a forward voltage drop of V/sub CE/=2.5 V, corresponding to a low R/sub SP-ON/ of 2.9 m/spl Omega//spl middot/cm/sup 2/ up to J/sub c/=859 A/cm/sup 2/. This is the lowest specific ON-resistance ever reported for high-power 4H-SiC BJTs.  相似文献   

17.
We report an interdigitated p-i-n photodetector fabricated on a 1-/spl mu/m-thick Ge epitaxial layer grown on a Si substrate using a 10-/spl mu/m-thick graded SiGe buffer layer. A growth rate of 45 /spl Aring//s/spl sim/60 /spl Aring//s was achieved using low-energy plasma enhanced chemical vapor deposition. The Ge epitaxial layer had a threading dislocation density of 10/sup 5/ cm/sup -2/ and a rms surface roughness of 3.28 nm. The 3-dB bandwidth and the external quantum efficiency were measured on a photodetector having 1-/spl mu/m finger width and 2-/spl mu/m spacing with a 25/spl times/28 /spl mu/m/sup 2/ active area. At a wavelength of 1.3 /spl mu/m, the bandwidth was 2.2, 3.5, and 3.8 GHz at bias voltages of -1, -3, and -5 V, respectively. The dark current was 3.2 and 5.0 /spl mu/A at -3 and -5 V, respectively. This photodetector exhibited an external quantum efficiency of 49% at a wavelength of 1.3 /spl mu/m.  相似文献   

18.
We report a 0.7/spl times/8 /spl mu/m/sup 2/ InAlAs-InGaAs-InP double heterojunction bipolar transistor, fabricated in a molecular-beam epitaxy (MBE) regrown-emitter technology, exhibiting 160 GHz f/sub T/ and 140 GHz f/sub MAX/. These initial results are the first known RF results for a nonselective regrown-emitter heterojunction bipolar transistor, and the fastest ever reported using a regrown base-emitter heterojunction. The maximum current density is J/sub E/=8/spl times/10/sup 5/ A/cm/sup 2/ and the collector breakdown voltage V/sub CEO/ is 6 V for a 1500-/spl Aring/ collector. In this technology, the dimension of base-emitter junction has been scaled to an area as low as 0.3/spl times/4 /spl mu/m/sup 2/ while a larger-area extrinsic emitter maintains lower emitter access resistance. Furthermore, the application of a refractory metal (Ti-W) base contact beneath the extrinsic emitter regrowth achieves a fully self-aligned device topology.  相似文献   

19.
A low-voltage (1.3 V) 64-Mb ferroelectric random access memory (FRAM) using a one-transistor one-capacitor (1T1C) cell has been fabricated using a state-of-the-art 130-nm transistor and a five-level Cu/flouro-silicate glass (FSG) interconnect process. Only two additional masks are required for integration of the ferroelectric module into a single-gate-oxide low-voltage logic process. Novel overwrite sense amplifier and programmable ferroelectric reference generation schemes are employed for fast reliable read-write cycle operation. Address access time for the memory is less than 30 ns while consuming less than 0.8 mW/MHz at 1.37 V. An embedded FRAM (eFRAM) density of 1.13 Mb/mm/sup 2/ is achieved with a cell size of 0.54 /spl mu/m/sup 2/ and capacitor size of 0.25 /spl mu/m/sup 2/.  相似文献   

20.
Metal-ferroelectric-insulator-semiconductor (MFIS) field-effect transistors with Pb(Zr/sub 0.53/,Ti/sub 0.47/)O/sub 3/ ferroelectric layer and dysprosium oxide Dy/sub 2/O/sub 3/ insulator layer were fabricated. The out-diffusion of atoms between Dy/sub 2/O/sub 3/ and silicon was examined by secondary ion mass spectrometry profiles. The size of the memory windows was investigated. The memory windows measured from capacitance-voltage curves of MFIS capacitors and I/sub DS/-V/sub GS/ curves of MFIS transistors are consistent. The nonvolatile operation of MFIS transistors was demonstrated by applying positive/negative writing pulses. A high driving current of 9 /spl mu/A//spl mu/m was obtained even for long-channel devices with a channel length of 20 /spl mu/m. The electron mobility is 181 cm/sup 2//V/spl middot/s. The retention properties of MFIS transistors were also measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号