首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Focused Ion Beam (FIB) has been used to implant micrometer-sized areas of polycrystalline anatase TiO2 thin films with Ga+ ions using fluencies from 1015 to 1017 ions/cm2. The evolution of the surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the chemical modifications of the surface were followed by X-ray photoelectron spectroscopy (XPS). The implanted areas show a noticeable change in surface morphology as compared to the as-deposited surface. The surface loses its grainy morphology to gradually become a smooth surface with a RMS roughness of less than 1 nm for the highest ion fluence used. The surface recession or depth of the irradiated area increases with ion fluence, but the rate with which the depth increases changes at around 5 × 1016 ions/cm2. Comparison with implantation of a pre-irradiated surface indicates that the initial surface morphology may have a large effect on the surface recession rate. Detailed analysis of the XPS spectra shows that the oxidation state of Ti and O apparently does not change, whereas the implanted gallium exists in an oxidation state related to Ga2O3.  相似文献   

2.
In order to understand the formation mechanism of a crystallographic re-structuring in the periphery region of high-burnup nuclear fuel pellets, named as “rim structure”, information on the accumulation process of radiation damage and fission products (FPs), as well as high-density electronic excitation effects by FPs, are needed. In order to separate each of these processes and understand the high-density electronic excitation effects, 70–210 MeV FP ion (Xe10–14+, I7+ and Zr9+) irradiation studies on CeO2, as a simulation of fluorite ceramics of UO2, have been done at a tandem accelerator of JAEA-Tokai and the microstructure changes were determined by transmission electron microscope (TEM). Measurements of the diameter of ion tracks, which are caused by high-density electronic excitation, have clarified that the effective area of electronic excitation by high-energy fission products is around 5–7 nm  and the square of the track diameter tends to follow linear function of the electronic stopping power (Se). Prominent changes are hardly observed in the microstructure up to 400 °C. After overlapping of ion tracks, the elliptical deformation of diffraction spots is observed, but the diffraction spots are maintained at higher fluence. These results indicate that the structure of CeO2 is still crystalline and not amorphous. Under ion tracks overlapping heavily (>1 × 1015 ions/cm2), surface roughness, with characteristic size of the roughness around 1 μm, is observed and similar surface roughness has also been observed in light-water reactor (LWR) fuels.  相似文献   

3.
In order to understand the properties of ion tracks and the microstructural evolution under accumulation of ion tracks in UO2, 100 MeV Zr10+ and 210 MeV Xe14+ ions irradiation examinations have been done at a tandem accelerator facility of JAEA-Tokai, and it has been observed the microstructure by means of a transmission electron microscope (TEM) and a scanning electron microscope (SEM) in CRIEPI.Comparison of the diameter of ion tracks between UO2 and CeO2 under irradiation with 100 MeV Zr10+ and 210 MeV Xe14+ ions at room temperature clarify that the sensitivity on high density electronic excitation of UO2 is much less than that of CeO2. By the cross-sectional observation of UO2 under irradiation with 210 MeV Xe14+ ions at 300 °C, elliptical changes of fabricated pores that exist till ∼6 μm depth and the formation of dislocations have been observed in the ion fluence over 5 × 1014 ions/cm2. The drastic changes of surface morphology and inner structure in UO2 indicate that the overlapping of ion tracks will cause the point defects, enhance the diffusion of point defects and dislocations, and form the sub-grains at relatively low temperature.  相似文献   

4.
Ti3SiC2 is one of the most promising materials belonging to Mn+1AXn phases, which exhibit good damage tolerance, thermal stability and mechanical properties.Recently, in the frame of research on future gas cooled fast nuclear reactors, Ti3SiC2 has been considered as an innovative candidate material, which could be incorporated in some core components such as fuel cladding. At the present time, however, very few data are available concerning the behaviour of this material after irradiation. In this work, Ti3Si0.90Al0.10C2 samples were irradiated with high energy Kr and Xe ions and characterized by X-ray diffraction. Patterns were analysed in terms of change in peak intensity, peak position and width. Rietveld refinements were also performed. Increase in micro-strains and lattice parameter with irradiation dose was highlighted. The formation of β-Ti3SiC2, which has never been observed by experimental XRD on non irradiated material, was proposed for the highly irradiated samples. A partial recovery of the microstructure with temperature was found.  相似文献   

5.
Transparent conducting cadmium stannate thin films were prepared by spray pyrolysis method on Corning substrate at a temperature of 525 °C. The prepared films are irradiated using 120 MeV swift Ag9+ ions for the fluence in the range 1 × 1012 to 1 × 1013 ions cm−2 and the structural, optical and electrical properties were studied. The intensity of the film decreases with increasing ion fluence and amorphization takes place at higher fluence (1 × 1013 ions cm−2). The transmittance of the films decreases with increasing ion fluence and also the band gap value decreases with increasing ion fluence. The resistivity of the film increased from 2.66 × 10−3 Ω cm (pristine) to 5.57 × 10−3 Ω cm for the film irradiated with 1 × 1013 ions cm−2. The mobility of the film decreased from 31 to 12 cm2/V s for the film irradiated with the fluence of 1 × 1013 ions cm−2.  相似文献   

6.
Ferromagnetic (FM) semiconductors obtained by doping ferromagnetic elements into a nonmagnetic semiconductor matrix are essential for the second generation of spintronics devices. In this study, we investigate Co doping behavior and subsequent magnetic properties in Co implanted and thermally annealed TiO2. In TiO2 single crystals, a decrease in the oxygen partial pressure during thermal annealing is found to enhance the Co substitutional fraction by increasing the concentration of oxygen vacancies. Magnetic properties determined from superconducting quantum interference device magnetometer (SQUID) measurements show that TiO2 crystals with a large fraction of substitutional Co are ferromagnetic at room temperature. In addition to single crystals, the feasibility of Co doping via ion implantation is studied in sol–gel synthesized TiO2 thin films. Results from grazing incidence X-ray diffraction (GIXRD) show that the implantation can produce Co doped TiO2 thin films and that the Co incorporation into Ti lattice site accompanies the transition from rutile to anatase phase. These results show that ion beam synthesis is a useful tool for producing ferromagnetic TiO2 with a high Curie temperature (TC).  相似文献   

7.
TiO2 thin films were prepared by direct current magnetron sputtering on glass substrates, then were implanted by cobalt ions, and finally annealed at 400 and 500 °C for 50 min, respectively. They were identified as an anatase structure by X-ray diffraction (XRD). Scanning electron microscope (SEM) images showed that the grain sizes of the films grow with increasing annealing temperature. The energy dispersive X-ray (EDX) measurements indicated that the ratio of the cobalt atoms number and total atoms number of cobalt and titanium in the Co-TiO2 films was about 2.51%, and X-ray photoelectron spectroscopy (XPS) results revealed that the cobalt existed in the films as Co2+. The element distribution of cobalt along cross-section of the films was studied by EDX, as the results showed that the cobalt diffused deeply into the films after annealing. The high resolution transmission electron microscopy (HRTEM) images were used to affirm the anatase structure of the Co-TiO2 films, and edge dislocations were further found in the HRTEM images, which could be attributed to the effect of the implantation.  相似文献   

8.
We have systematically studied Ar-ion-milling-induced microstructural evolution in Cu50Zr45Ti5 metallic glass (MG) during specimen preparation for transmission electron microscopy (TEM). We have observed the formation of a Cu10Zr7 intermetallic phase in samples prepared using low energy ion milling (2 keV) but without evident crystallization. We also observed the formation of nanocrystalline Cu10Zr7 phase (with a possibility of being mixed with other minor phases) in samples prepared using high energy ion milling (?3 keV). In contrast, the MG samples remained in the glassy state without any microstructural changes when prepared by either electropolishing or low energy ion milling with liquid nitrogen cooling (2 keV). Further, our study suggests that chemical decomposition might be a necessary intermediate stage for crystallization. In situ TEM electron irradiation shows ion-milling-induced phase segregation and preferred nanocrystallization in the precipitated regions.  相似文献   

9.
TiO2 thin films were prepared by direct current magnetron sputtering on glass substrates, and then implanted by manganese ions, and finally annealed at different temperatures. They are identified as an anatase structure by XRD, and crystallization of the films is better and better as the annealing temperature increases. SEM images are shown that the grain size of the films will grow big and big with annealing temperature increasing. The EDX measurement indicated that the concentration of manganese was about 4.68%. The HRTEM was used to analyze the fine anatase structure of the Mn-TiO2 composite film, and edge dislocations were further found in the HRTEM image, which could be attributed to the manganese ions implantation effect.  相似文献   

10.
Nanoparticle formation in the, rf-sputtering grown, polycrystalline CeO2 thin films is achieved by the swift heavy ion (SHI) irradiation. Crystal structure and phases present in the as-grown and irradiated thin films are investigated by the X-ray diffraction (XRD) measurements. Irradiation induced formation of spherically shaped nanostructures, on the film surface, is confirmed by the atomic force microscopy (AFM). The Raman spectra of the irradiated samples show increased line-width and peak position shifting in the Raman active mode (F2g) of CeO2, indicative of the nanocrystallization in the irradiated CeO2 thin films. Formation of nanostructures in the irradiated samples is also briefly discussed in the light of ion energy and energy loss mechanisms.  相似文献   

11.
Among ceramic materials for nuclear waste containment, single crystal yttria fully stabilized zirconia (FSZ) gained particular consideration because of its excellent radiation resistance both in the elastic and inelastic collision regime. We deposited amorphous and polycrystalline, cubic FSZ thin films on (1 0 0) Si by ultraviolet pulsed laser ablation and irradiated them with swift heavy uranium ions of 2.6-GeV energy at fluences between 2 and 12 × 1011 ions cm−2. The films were characterized before and after irradiation using X-ray reflectivity, grazing incidence X-ray diffraction, micro-Raman spectroscopy and transmission electron microscopy. Under ion irradiation, as-deposited crystalline films undergo amorphisation, followed by partial recrystallisation, whereas as-deposited amorphous films retain their disordered character. The dominant defects produced in the films are oxygen vacancies which may explain the amorphisation to recrystallisation path of our crystalline films.  相似文献   

12.
Nucleation and growth process of defect clusters in cerium dioxide (CeO2) with fluorite-type crystal structure has been investigated in situ under electron irradiation by using high voltage transmission electron microscopy. Planar defect clusters were formed with electron irradiation ranging from 200 to 1000 keV at temperatures below 450 K. The defect clusters were determined to be faulted-interstitial type dislocation loops lying on {1 1 1} planes. The growth rate of dislocation loops was found to increase with decreasing electron energy. An analysis of the fluence dependence of the growth process of dislocation loops suggests an increase in the vacancy mobility with decreasing electron energy. The rate of the electronic excitation is discussed in terms of the radiation-induced diffusion of oxygen-ion vacancies.  相似文献   

13.
Large enhancement in electrical conductivity from <10−10 S cm−1 to 4 × 10−2 S cm−1 was achieved in polycrystalline 12CaO · 7Al2O3 (p-C12A7) thin films by hot Au+ implantation at 600 °C and subsequent ultraviolet (UV) light illumination. Although the as-implanted films were transparent and insulating, the subsequent UV-light illumination induced persistent electronic conduction and coloration. A good correlation was found between the concentration of photo-induced F+-like centers (a cage trapping an electron) and calculated displacements per atom, indicating that the hot Au+ implantation extruded free O2− ions from the cages in the p-C12A7 films by kick-out effects and left electrons in the cages. These results suggest that H ions are formed by the Au+ implantation through the decomposition of preexisting OH ions. Subsequent UV-light illumination produced F+-like centers via photoionization of the H ions, which leads to the electronic conduction and coloration.  相似文献   

14.
Effects of 150 MeV Ni11+ swift heavy ion (SHI) irradiation on copper ferrite nanoparticles have been studied at the fluences of 1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014 and 5 × 1014 ions/cm2. The XRD pattern shows the irradiation fluence dependant preferential orientation. Scanning electron microscope analysis displays fine blocks of material for pristine while partial agglomeration on irradiation. Notably, a large number of holes are present at the fluence of 5 × 1014 ions/cm2. The magnetization measurements performed in these samples exposes that the coercivity and remanence magnetization value increases due to the magnetocrystalline anisotropy up to the fluence of 1 × 1013 ions/cm2. At 1 × 1014 ions/cm2 fluence, the induced thermal energy overcomes the magnetocrystalline anisotropy constant and causes a decrease in coercivity and remanence values. The saturation magnetization decreases up to the fluence of 1 × 1013 ions/cm2 and then it increases for further irradiation. The change of crystalline orientation observed from XRD, the creation of holes from SEM and the change in magnetic properties are discussed on the basis of electro-phonon coupling and it invokes the thermal spike theory.  相似文献   

15.
利用兰州大学强流中子发生器出射的单能D-D中子对单晶TiO2(金红石相)进行辐照,分别测量了样品的正电子寿命谱及XRD谱。中子辐照会在样品内部产生大量的空位缺陷,由于晶格中Ti原子的位移阈能约为O原子的2倍,因此中子辐照在样品内部产生的空位缺陷以氧空位(VO)为主。结果表明,单晶内部捕获正电子的陷阱Ti空位(VTi)在中子辐照后电子密度增大,可能与Ti空位周围O空位的引入有关,O空位的出现减弱了Ti空位处的库仑排斥作用,使空位体积减少。后续测试的XRD也得到相同的结果,样品由于中子辐照而在c轴方向的晶面间距发生变化,并导致单晶TiO2的结晶度变差。  相似文献   

16.
Microstructure change and atomic disordering in MgO · nAl2O3 (n = 1.1) irradiated with 350 MeV Au ions (Se = 35 keV/nm) were investigated through transmission electron microscopy (TEM) and high angular resolution electron channeling X-ray spectroscopy (HARECXS) techniques. High resolution TEM revealed that each ion track maintains crystalline structure. The core region of ion track is found to reveal a lattice fringe with a half period of spinel matrix, suggesting the phase transformation from spinel to rock-salt structure. HARECXS analysis clearly showed progress of cation disorder at a significantly large region of 10 nm in diameter. These results are compared with the previous results of 200 MeV Xe ion irradiated spinel (Se = 25 keV/nm). The structure of ion tracks is found to consist of three concentric circle structures: the defective core region (2 nm in diameter), strained region (5 nm) and cation disordered region (10–12 nm).  相似文献   

17.
Cu nanocrystals (NCs) were synthesized in SiO2 by ion implantation and thermal annealing. Annealing at two different temperatures of 950 °C and 650 °C yielded two different nanocrystal size distributions with an average diameter of 8.1 and 2.5 nm, respectively. Subsequently the NCs were exposed to 5.0 MeV Sn3+ ion irradiation simultaneously with a thin Cu film as a bulk reference. The short-range atomic structure and average NC diameter was measured by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and small angle X-ray scattering (SAXS), respectively. Consistent with the high regeneration rate of bulk elemental metals, no irradiation induced defects were observed for the reference, whereas the small NCs (2.5 nm) were dissolved as Cu monomers in the matrix. The latter was attributed to irradiation-induced mixing of Cu, Si and O based on dynamic binary collision simulations. For the large NCs (8.1 nm) only minor structural changes were observed upon irradiation, consistent with a more bulk-like pre-irradiation structure.  相似文献   

18.
We propose the binomial distribution function is a useful function to describe the fluence dependence of overlapped and non-overlapped area of ion-tracks created by high-energy heavy ions. The validity of the function has been proven by simple computer simulation assuming that ion-tracks are introduced at random positions of two-dimentional grid. In order to test the applicability of the function for describing accumulation behavior of non-amorphized ion-tracks, asymmetric X-ray diffraction peak observed for CeO2 irradiated with 200-MeV 197Au ions has been analyzed. The asymmetric peak observed after the irradiations can be explained by the sum of the original peak attributed to the matrix and the new peak partly attributed to non-overlapped area of ion-tracks. It has been found that the binomial distribution function is useful for explaining the fluence dependence of the non-overlapped area of ion-tracks.  相似文献   

19.
Nanophases of TiO2 are achieved by irradiating polycrystalline thin films of TiO2 by 100 MeV Au ion beam at varying fluence. The surface morphology of pristine and irradiated films is studied by atomic force microscopy (AFM). Phase of the film before and after irradiation is identified by glancing angle X-ray diffraction (GAXRD). The blue shift observed in UV-vis absorption edge of the irradiated films indicates nanostructure formation. Electron spin resonance (ESR) studies are carried out to identify defects created by the irradiation. The nanocrystallisation induced by SHI irradiation in polycrystalline thin films is studied.  相似文献   

20.
本工作旨在合成一种高吸附性能、高选择性的吸附材料,实现重金属离子的去除和海水中铀资源的提取。将天然葵花粉(SFP)通过溶胶凝胶法与TiO2颗粒进行复合,得到TiO2/SFP复合材料。将合成材料进行扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、能谱分析(EDS)、X射线光电子能谱(XPS)等表征和吸附测试;在pH值为6.0时,材料最大吸附容量可达到215.7 mg/g。复合材料对于溶液中铀的吸附符合准二级动力学模型,是一个吸热、可自发的过程,其吸附等温线符合Langmuir模型,在模拟海水中材料对铀的去除率超过90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号